A novel codebook generation by smart fruit fly algorithm based on exponential flight

I. Kilic
{"title":"A novel codebook generation by smart fruit fly algorithm based on exponential flight","authors":"I. Kilic","doi":"10.34028/iajit/20/4/4","DOIUrl":null,"url":null,"abstract":"A codebook is a combination of vectors that represents a digital image best and very useful tool for compression. Besides the well-known techniques such as Linde-Buzo-Gray, C-Means, and Fuzzy C-Means the nature-inspired metaheuristic algorithms have also become alternate techniques for solving the codebook generation problem. Fruit Fly Optimization Algorithm (FFA) is a simple and efficient algorithm, but the capturing of an agent by a local minimum point is the main problem. Therefore, the fruit flies generally do not reach the global solution at the end of the iterations. In this study, the FFA is empowered with a smart exponential flight approach to finding out a global optimum codebook. In this approach, if a fruit fly agent is captured by a local minimum point accidentally, the smart exponential flight steps provide an opportunity to escape from it easily. In the experimental studies, successful compression results have been taken in terms of lower error rates. The numerical results prove that the proposed Smart Exponential flight-based Fruit Fly Algorithm (SE-FFA) is better than the variations of convolutional FFA by providing a global optimum codebook.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"24 1","pages":"584-591"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/4/4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A codebook is a combination of vectors that represents a digital image best and very useful tool for compression. Besides the well-known techniques such as Linde-Buzo-Gray, C-Means, and Fuzzy C-Means the nature-inspired metaheuristic algorithms have also become alternate techniques for solving the codebook generation problem. Fruit Fly Optimization Algorithm (FFA) is a simple and efficient algorithm, but the capturing of an agent by a local minimum point is the main problem. Therefore, the fruit flies generally do not reach the global solution at the end of the iterations. In this study, the FFA is empowered with a smart exponential flight approach to finding out a global optimum codebook. In this approach, if a fruit fly agent is captured by a local minimum point accidentally, the smart exponential flight steps provide an opportunity to escape from it easily. In the experimental studies, successful compression results have been taken in terms of lower error rates. The numerical results prove that the proposed Smart Exponential flight-based Fruit Fly Algorithm (SE-FFA) is better than the variations of convolutional FFA by providing a global optimum codebook.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于指数飞行的智能果蝇编码本生成算法
码本是矢量的组合,它代表了数字图像的最佳和非常有用的压缩工具。除了众所周知的Linde-Buzo-Gray、C-Means和Fuzzy C-Means等技术外,自然启发的元启发式算法也成为解决码本生成问题的替代技术。果蝇优化算法(FFA)是一种简单高效的算法,但其主要问题是如何利用局部最小点捕获agent。因此,果蝇在迭代结束时通常不会得到全局解。在这项研究中,FFA被赋予了智能指数飞行方法来寻找全局最优码本。在这种方法中,如果果蝇代理意外地被局部最小点捕获,智能指数飞行步骤提供了一个轻松逃脱的机会。在实验研究中,以较低的错误率取得了成功的压缩结果。数值结果表明,基于智能指数飞行的果蝇算法(SE-FFA)提供了全局最优码本,优于卷积FFA算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Energy Efficient Harvesting Technique for SDWSN using RF Transmitters with MISO Beamforming Incorporating triple attention and multi-scale pyramid network for underwater image enhancement Generative adversarial networks with data augmentation and multiple penalty areas for image synthesis MAPNEWS: a framework for aggregating and organizing online news articles Deep learning based mobilenet and multi-head attention model for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1