Inkjet 3D bioprinting for tissue engineering and pharmaceutics

IF 3.3 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Zhejiang University-SCIENCE A Pub Date : 2022-12-01 DOI:10.1631/2023.A2200569
Deng-ke Zhao, Hengjuan Xu, J. Yin, Hua-yong Yang
{"title":"Inkjet 3D bioprinting for tissue engineering and pharmaceutics","authors":"Deng-ke Zhao, Hengjuan Xu, J. Yin, Hua-yong Yang","doi":"10.1631/2023.A2200569","DOIUrl":null,"url":null,"abstract":"3D bioprinting has the capability to create 3D cellular constructs with the desired shape using a layer-by-layer approach. Inkjet 3D bioprinting, as a key component of 3D bioprinting, relies on the deposition of cell-laden droplets to create native-like tissues/organs which are envisioned to be transplantable into human body for replacing damaged ones. Benefiting from its superiorities such as high printing resolution and deposition accuracy, inkjet 3D bioprinting has been widely applied to various areas, including, but not limited to, tissue engineering and drug screening in pharmaceutics. Even though inkjet 3D bioprinting has proved its feasibility and versatility in various fields, the current applications of inkjet 3D bioprinting are still limited by the printing technique and material selection. This review, which specifically focuses on inkjet 3D bioprinting, firstly summarizes the techniques, materials, and applications of inkjet 3D bioprinting in tissue engineering and drug screening, subsequently discusses the major challenges that inkjet 3D bioprinting is facing, and lastly summarizes potential solutions to those challenges.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"46 1","pages":"955 - 973"},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/2023.A2200569","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

3D bioprinting has the capability to create 3D cellular constructs with the desired shape using a layer-by-layer approach. Inkjet 3D bioprinting, as a key component of 3D bioprinting, relies on the deposition of cell-laden droplets to create native-like tissues/organs which are envisioned to be transplantable into human body for replacing damaged ones. Benefiting from its superiorities such as high printing resolution and deposition accuracy, inkjet 3D bioprinting has been widely applied to various areas, including, but not limited to, tissue engineering and drug screening in pharmaceutics. Even though inkjet 3D bioprinting has proved its feasibility and versatility in various fields, the current applications of inkjet 3D bioprinting are still limited by the printing technique and material selection. This review, which specifically focuses on inkjet 3D bioprinting, firstly summarizes the techniques, materials, and applications of inkjet 3D bioprinting in tissue engineering and drug screening, subsequently discusses the major challenges that inkjet 3D bioprinting is facing, and lastly summarizes potential solutions to those challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于组织工程和制药的喷墨3D生物打印
3D生物打印具有使用逐层方法创建具有所需形状的3D细胞结构的能力。喷墨生物3D打印技术是生物3D打印技术的重要组成部分,它依赖于细胞滴滴的沉积来制造类似于天然的组织/器官,这些组织/器官有望移植到人体中,以替代受损的组织/器官。喷墨生物3D打印凭借其高打印分辨率和沉积精度等优势,已广泛应用于包括但不限于组织工程和药物筛选等各个领域。尽管喷墨生物3D打印已经在各个领域证明了其可行性和通用性,但目前喷墨生物3D打印的应用仍然受到打印技术和材料选择的限制。本文以喷墨生物3D打印为重点,首先综述了喷墨生物3D打印技术、材料及其在组织工程和药物筛选中的应用,然后讨论了喷墨生物3D打印面临的主要挑战,最后总结了这些挑战的潜在解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Zhejiang University-SCIENCE A
Journal of Zhejiang University-SCIENCE A 工程技术-工程:综合
CiteScore
5.60
自引率
12.50%
发文量
2964
审稿时长
2.9 months
期刊介绍: Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.
期刊最新文献
A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator Dynamics of buoyancy-driven microflow in a narrow annular space Key technologies and development trends of the soft abrasive flow finishing method Solid-liquid flow characteristics and sticking-force analysis of valve-core fitting clearance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1