R. Aures, K. Gericke, M. Kawasaki, C. Maul, Y. Nakano, G. Trott-Kriegeskorte, Zhenya Wang
{"title":"Extreme high rotational excitation of ClO","authors":"R. Aures, K. Gericke, M. Kawasaki, C. Maul, Y. Nakano, G. Trott-Kriegeskorte, Zhenya Wang","doi":"10.1039/B108052K","DOIUrl":null,"url":null,"abstract":"We observed the population of extremely high non-thermal rotational states of ClO (J max = 130.5) upon photodissociation of Cl 2 O. State-resolved and isotope-specific detection of nascent ClO is performed by observing single colour (2 + 1) resonance enhanced multiphoton ionisation (REMPI) spectra following excitation in the wavelength range from 336 to 344 nm. The REMPI spectrum is assigned to the ClO(C 2 Σ – , v′ = 0 ← X 2 Π Ω , v = 0) transition. The non-thermal population of rotational states is highly inverted, peaking at J = 107.5. The photodissociation of Cl 2 O is a classical example for the pure impulsive model, as a consequence of the Cl 2 O mass distribution and a weak dependence of the upper potential energy surface on the bond angle. Cl 2 O can thus be used as clean source for laboratory generation of highly excited ClO molecules with a defined non-thermal rotational population. In kinetic studies using ClO from Cl 2 O as precursor the high rotational excitation needs to be considered carefully.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":"32 1","pages":"102-105"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B108052K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We observed the population of extremely high non-thermal rotational states of ClO (J max = 130.5) upon photodissociation of Cl 2 O. State-resolved and isotope-specific detection of nascent ClO is performed by observing single colour (2 + 1) resonance enhanced multiphoton ionisation (REMPI) spectra following excitation in the wavelength range from 336 to 344 nm. The REMPI spectrum is assigned to the ClO(C 2 Σ – , v′ = 0 ← X 2 Π Ω , v = 0) transition. The non-thermal population of rotational states is highly inverted, peaking at J = 107.5. The photodissociation of Cl 2 O is a classical example for the pure impulsive model, as a consequence of the Cl 2 O mass distribution and a weak dependence of the upper potential energy surface on the bond angle. Cl 2 O can thus be used as clean source for laboratory generation of highly excited ClO molecules with a defined non-thermal rotational population. In kinetic studies using ClO from Cl 2 O as precursor the high rotational excitation needs to be considered carefully.