Ben Groelke, Christian Earnhardt, John Borek, C. Vermillion
{"title":"Analysis of a Novel Command Governor-Based Adaptive Cruise Controller for Non-Cooperative Vehicle Following","authors":"Ben Groelke, Christian Earnhardt, John Borek, C. Vermillion","doi":"10.1115/dscc2019-9196","DOIUrl":null,"url":null,"abstract":"\n This paper presents a novel adaptive cruise control (ACC) strategy that utilizes a command governor (CG) to enforce vehicle following constraints. The CG formulation relies on knowledge of the maximum possible braking deceleration of the lead vehicle and a tunable assumption regarding the lead vehicle velocity profile (offering different levels of conservatism) to modify wheel torque commands to ensure safe following. In particular, a safe following distance is defined as one in which the ego vehicle can avoid collision with the lead vehicle and maintain a sufficient following distance in the event that the lead vehicle exerts maximum braking deceleration. The CG seeks to adjust the wheel torque command such that the aforementioned constraint is satisfied at every step in a prediction horizon (i.e., at every step, if the lead vehicle exerts maximum braking deceleration, the ego vehicle can brake and remain outside of the aforementioned buffer zone), which requires an estimate of future lead vehicle behavior. In this work, we explore different levels of conservatism with regard to this assumption. Simulations are presented for a heavy-duty truck, using a stochastic lead vehicle model that has been calibrated with actual traffic data. Even for the most conservative lead vehicle prediction models, results show that this CG-based ACC strategy can reduce braking energy expended (used as a surrogate for fuel wasted) by up to 78%, while improving drivability and reducing total trip time.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a novel adaptive cruise control (ACC) strategy that utilizes a command governor (CG) to enforce vehicle following constraints. The CG formulation relies on knowledge of the maximum possible braking deceleration of the lead vehicle and a tunable assumption regarding the lead vehicle velocity profile (offering different levels of conservatism) to modify wheel torque commands to ensure safe following. In particular, a safe following distance is defined as one in which the ego vehicle can avoid collision with the lead vehicle and maintain a sufficient following distance in the event that the lead vehicle exerts maximum braking deceleration. The CG seeks to adjust the wheel torque command such that the aforementioned constraint is satisfied at every step in a prediction horizon (i.e., at every step, if the lead vehicle exerts maximum braking deceleration, the ego vehicle can brake and remain outside of the aforementioned buffer zone), which requires an estimate of future lead vehicle behavior. In this work, we explore different levels of conservatism with regard to this assumption. Simulations are presented for a heavy-duty truck, using a stochastic lead vehicle model that has been calibrated with actual traffic data. Even for the most conservative lead vehicle prediction models, results show that this CG-based ACC strategy can reduce braking energy expended (used as a surrogate for fuel wasted) by up to 78%, while improving drivability and reducing total trip time.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.