Deep Learning Approach to Technician Routing and Scheduling Problem

IF 1.7 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal Pub Date : 2022-10-21 DOI:10.14201/adcaij.27393
Engin Pekel
{"title":"Deep Learning Approach to Technician Routing and Scheduling Problem","authors":"Engin Pekel","doi":"10.14201/adcaij.27393","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid algorithm including the Adam algorithm and body change operator (BCO). Feasible solutions to technician routing and scheduling problems (TRSP) are investigated by performing deep learning based on the Adam algorithm and the hybridization of Adam-BCO. TRSP is a problem where all tasks are routed, and technicians are scheduled. In the deep learning method based on the Adam algorithm and Adam-BCO algorithm, the weights of the network are updated, and these weights are evaluated as Greedy approach, and routing and scheduling are performed. The performance of the Adam-BCO algorithm is experimentally compared with the Adam and BCO algorithm by solving the TRSP on the instances developed from the literature. The numerical results evidence that Adam-BCO offers faster and better solutions considering Adam and BCO algorithm. The average solution time increases from 0.14 minutes to 4.03 minutes, but in return, Gap decreases from 9.99% to 5.71%. The hybridization of both algorithms through deep learning provides an effective and feasible solution, as evidenced by the results.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":"73 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij.27393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a hybrid algorithm including the Adam algorithm and body change operator (BCO). Feasible solutions to technician routing and scheduling problems (TRSP) are investigated by performing deep learning based on the Adam algorithm and the hybridization of Adam-BCO. TRSP is a problem where all tasks are routed, and technicians are scheduled. In the deep learning method based on the Adam algorithm and Adam-BCO algorithm, the weights of the network are updated, and these weights are evaluated as Greedy approach, and routing and scheduling are performed. The performance of the Adam-BCO algorithm is experimentally compared with the Adam and BCO algorithm by solving the TRSP on the instances developed from the literature. The numerical results evidence that Adam-BCO offers faster and better solutions considering Adam and BCO algorithm. The average solution time increases from 0.14 minutes to 4.03 minutes, but in return, Gap decreases from 9.99% to 5.71%. The hybridization of both algorithms through deep learning provides an effective and feasible solution, as evidenced by the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
技术人员路由调度问题的深度学习方法
提出了一种包含Adam算法和body change operator (BCO)的混合算法。采用基于Adam算法和Adam- bco杂交的深度学习方法,研究了技术人员路由调度问题(TRSP)的可行解决方案。TRSP是一个所有任务都被路由,技术人员都被调度的问题。在基于Adam算法和Adam- bco算法的深度学习方法中,对网络的权值进行更新,并将这些权值评估为贪心方法,进行路由和调度。通过在文献中开发的实例上求解TRSP,实验比较了Adam-BCO算法与Adam和BCO算法的性能。数值结果表明,结合Adam和BCO算法,Adam-BCO能提供更快更好的解。平均溶液时间由0.14 min增加到4.03 min,而Gap由9.99%降低到5.71%。结果表明,通过深度学习将两种算法混合在一起,提供了一种有效可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
期刊最新文献
Enhancing Energy Efficiency in Cluster Based WSN using Grey Wolf Optimization Comparison of Pre-trained vs Custom-trained Word Embedding Models for Word Sense Disambiguation Healthcare Data Collection Using Internet of Things and Blockchain Based Decentralized Data Storage Development of an Extended Medical Diagnostic System for Typhoid and Malaria Fever Comparison of Swarm-based Metaheuristic and Gradient Descent-based Algorithms in Artificial Neural Network Training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1