Acceleration signatures in the dayside boundary layer and the cusp

M. Yamauchi , L. Andersson , P.-A. Lindqvist , S. Ohtani , J. Clemmons , J.-E. Wahlund , L. Eliasson , R. Lundin
{"title":"Acceleration signatures in the dayside boundary layer and the cusp","authors":"M. Yamauchi ,&nbsp;L. Andersson ,&nbsp;P.-A. Lindqvist ,&nbsp;S. Ohtani ,&nbsp;J. Clemmons ,&nbsp;J.-E. Wahlund ,&nbsp;L. Eliasson ,&nbsp;R. Lundin","doi":"10.1016/S1464-1917(00)00107-0","DOIUrl":null,"url":null,"abstract":"<div><p>Freja data show various electron acceleration signatures in the cusp and the dayside boundary layer: (1) time dispersive super-Alfvénic electrons followed by strong wave activity which accompanies transient downward super-thermal electron burst in both the boundary layer and the cusp; (2) quasi-stationary bidirectional electron burst coinciding with localized intense field-aligned current in the boundary layer; (3) downgoing electron burst without visible time dispersion in the cusp; and (4) thermal electrons accelerated by electrostatic potential in both the boundary layer and the cusp. The first and last signatures are different between two regions for typical energies and fluxes, and these differences probably reflect the different auroral emission in the cusp proper (red) and the boundary layer (green). Contributions of these electrons to the large-scale field-aligned currents are also different between two regions. The dispersed electron burst is probably accelerated within 1 Re above the ionosphere. From this result we believe that the cusp red aurora is caused mainly by accelerated electrons, but not by the smoothly entering magnetosheath electrons without acceleration. This also requires revisions of flux transfer event models for the structured cusp red aurora.</p></div>","PeriodicalId":101026,"journal":{"name":"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science","volume":"26 1","pages":"Pages 195-200"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1464-1917(00)00107-0","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464191700001070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Freja data show various electron acceleration signatures in the cusp and the dayside boundary layer: (1) time dispersive super-Alfvénic electrons followed by strong wave activity which accompanies transient downward super-thermal electron burst in both the boundary layer and the cusp; (2) quasi-stationary bidirectional electron burst coinciding with localized intense field-aligned current in the boundary layer; (3) downgoing electron burst without visible time dispersion in the cusp; and (4) thermal electrons accelerated by electrostatic potential in both the boundary layer and the cusp. The first and last signatures are different between two regions for typical energies and fluxes, and these differences probably reflect the different auroral emission in the cusp proper (red) and the boundary layer (green). Contributions of these electrons to the large-scale field-aligned currents are also different between two regions. The dispersed electron burst is probably accelerated within 1 Re above the ionosphere. From this result we believe that the cusp red aurora is caused mainly by accelerated electrons, but not by the smoothly entering magnetosheath electrons without acceleration. This also requires revisions of flux transfer event models for the structured cusp red aurora.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日面边界层和尖端的加速度特征
Freja数据显示,在边界层和日侧边界层中有不同的电子加速特征:(1)时间色散的超阿尔夫萨奇电子伴随着强波活动,并伴随着瞬态向下的超热电子爆发;(2)边界层中与局域强场向电流重合的准稳态双向电子爆发;(3)下行电子爆发,在尖端没有可见的时间色散;(4)边界层和尖端均受静电势加速的热电子。在典型能量和通量上,两个区域的第一和最后的特征是不同的,这些差异可能反映了尖顶固有区(红色)和边界层(绿色)中极光发射的不同。这些电子对大尺度场向电流的贡献在两个区域之间也不同。分散的电子爆发可能在电离层以上1re内加速。根据这一结果,我们认为尖端红极光主要是由加速电子引起的,而不是由没有加速的电子顺利进入磁鞘引起的。这也需要对结构尖顶红色极光的通量转移事件模型进行修订。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Editorial Introduction Author index Editorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1