New-Age Kolmogorov Full-Function Neural Network KNN Offers High-Fidelity Reservoir Predictions via Estimation of Core, Well Log, Map and Seismic Properties

I. Priezzhev, D. Danko, U. Strecker
{"title":"New-Age Kolmogorov Full-Function Neural Network KNN Offers High-Fidelity Reservoir Predictions via Estimation of Core, Well Log, Map and Seismic Properties","authors":"I. Priezzhev, D. Danko, U. Strecker","doi":"10.2118/207575-ms","DOIUrl":null,"url":null,"abstract":"\n Instead of relying on analytical functions to approximate property relationships, this innovative hybrid neural network technique offers highly adaptive, full-function (!) predictions that can be applied to different subsurface data types ranging from (1.) core-to-log prediction (permeability), (2.) multivariate property maps (oil-saturated thickness maps), and, (3.) petrophysical properties from 3D seismic data (i.e., hydrocarbon pore volume, instantaneous velocity). For each scenario a separate example is shown. In case study 1, core measurements are used as the target array and well log data serve training. To analyze the uncertainty of predicted estimates, a second oilfield case study applies 100 iterations of log data from 350 wells to obtain P10-P50-P90 probabilities by randomly removing 40% (140 wells) for validation purposes. In a third case study elastic logs and a low-frequency model are used to predict seismic properties. KNN generates a high level of freedom operator with only one (or more) hidden layer(s). Iterative parameterization precludes that high correlation coefficients arise from overtraining. Because the key advantage of the Kolmogorov neural network (KNN) is to permit non-linear, full-function approximations of reservoir properties, the KNN approach provides a higher-fidelity solution in comparison to other linear or non-linear neural net regressions. KNN offers a fast-track alternative to classic reservoir property predictions from model-based seismic inversions by combining (a) Kolmogorov's Superposition Theorem and (b) principles of genetic inversion (Darwin's \"Survival of the fittest\") together with Tikhonov regularization and gradient theory. In practice, this is accomplished by minimizing an objective function on multiple and simultaneous outputs from full-function (via look-up table) Kolmogorov neural network runs. All case studies produce high correlations between actual and predicted properties when compared to other stochastic or deterministic inversions. For instance, in the log to seismic prediction better (simulated) resolution of neural network results can be discerned compared to traditional inversion results. Moreover, all blind tests match the overall shape of prominent log curve deflections with a higher degree of fidelity than from inversion. An important fringe benefit of KNN application is the observed increase in seismic resolution that by comparison falls between the seismic resolution of a model-based inversion and the simulated resolution from seismic stochastic inversion.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207575-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Instead of relying on analytical functions to approximate property relationships, this innovative hybrid neural network technique offers highly adaptive, full-function (!) predictions that can be applied to different subsurface data types ranging from (1.) core-to-log prediction (permeability), (2.) multivariate property maps (oil-saturated thickness maps), and, (3.) petrophysical properties from 3D seismic data (i.e., hydrocarbon pore volume, instantaneous velocity). For each scenario a separate example is shown. In case study 1, core measurements are used as the target array and well log data serve training. To analyze the uncertainty of predicted estimates, a second oilfield case study applies 100 iterations of log data from 350 wells to obtain P10-P50-P90 probabilities by randomly removing 40% (140 wells) for validation purposes. In a third case study elastic logs and a low-frequency model are used to predict seismic properties. KNN generates a high level of freedom operator with only one (or more) hidden layer(s). Iterative parameterization precludes that high correlation coefficients arise from overtraining. Because the key advantage of the Kolmogorov neural network (KNN) is to permit non-linear, full-function approximations of reservoir properties, the KNN approach provides a higher-fidelity solution in comparison to other linear or non-linear neural net regressions. KNN offers a fast-track alternative to classic reservoir property predictions from model-based seismic inversions by combining (a) Kolmogorov's Superposition Theorem and (b) principles of genetic inversion (Darwin's "Survival of the fittest") together with Tikhonov regularization and gradient theory. In practice, this is accomplished by minimizing an objective function on multiple and simultaneous outputs from full-function (via look-up table) Kolmogorov neural network runs. All case studies produce high correlations between actual and predicted properties when compared to other stochastic or deterministic inversions. For instance, in the log to seismic prediction better (simulated) resolution of neural network results can be discerned compared to traditional inversion results. Moreover, all blind tests match the overall shape of prominent log curve deflections with a higher degree of fidelity than from inversion. An important fringe benefit of KNN application is the observed increase in seismic resolution that by comparison falls between the seismic resolution of a model-based inversion and the simulated resolution from seismic stochastic inversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新时代Kolmogorov全函数神经网络KNN通过估算岩心、测井曲线、地质图和地震特性,提供高保真的储层预测
这种创新的混合神经网络技术提供了高度自适应的全功能预测,可以应用于不同的地下数据类型,包括:(1)岩心到测井曲线的预测(渗透率),(2)多元属性图(含油厚度图),(3)三维地震数据的岩石物理属性(即碳氢化合物孔隙体积、瞬时速度)。对于每个场景,都显示了一个单独的示例。在案例研究1中,岩心测量数据被用作目标阵列,测井数据用于训练。为了分析预测估计的不确定性,第二个油田案例研究对350口井的测井数据进行了100次迭代,通过随机剔除40%(140口井)来获得P10-P50-P90概率。在第三个案例研究中,使用弹性测井和低频模型来预测地震特性。KNN生成一个高度自由的算子,只有一个(或多个)隐藏层。迭代参数化排除了过度训练产生的高相关系数。由于Kolmogorov神经网络(KNN)的主要优势是允许对储层性质进行非线性、全函数逼近,因此与其他线性或非线性神经网络回归相比,KNN方法提供了更高保真度的解决方案。KNN通过结合(a) Kolmogorov叠加定理和(b)遗传反演原理(达尔文的“适者生存”)以及Tikhonov正则化和梯度理论,为基于模型的地震反演的经典储层属性预测提供了一种快速替代方案。在实践中,这是通过最小化全功能(通过查找表)Kolmogorov神经网络运行的多个同时输出的目标函数来实现的。与其他随机或确定性反转相比,所有案例研究都产生了实际和预测属性之间的高度相关性。例如,在测井到地震的预测中,与传统的反演结果相比,神经网络结果可以识别出更好的(模拟)分辨率。此外,与反演相比,所有盲测都能以更高的保真度匹配突出的对数曲线偏差的整体形状。KNN应用的一个重要附带好处是,通过比较,基于模型的反演的地震分辨率与地震随机反演的模拟分辨率之间的差异,可以观察到地震分辨率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of Unconventional Resources Opportunities in the Middle East Tethyan Petroleum System in a Transfer Learning Context Block 61 Drilling Fluids Optimization Journey High Resolution Reservoir Simulator Driven Custom Scripts as the Enabler for Solving Reservoir to Surface Network Coupling Challenges Pre-Engineered Standardized Turbomachinery Solutions: A Strategic Approach to Lean Project Management Using Active and Passive Near-Field Hydrophones to Image the Near-Surface in Ultra-Shallow Waters Offshore Abu Dhabi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1