Identification of temporal network changes in short-course gene expression from C. elegans reveals structural volatility

Kathryn M. Cooper, Wail M. Hassan, H. Ali
{"title":"Identification of temporal network changes in short-course gene expression from C. elegans reveals structural volatility","authors":"Kathryn M. Cooper, Wail M. Hassan, H. Ali","doi":"10.1504/IJCBDD.2019.10021270","DOIUrl":null,"url":null,"abstract":"Many bioinformatics algorithms attempt to extract relevant biological information from datasets obtained at specific data points. However, it is critical to identify changing genes in temporal data so that studies can focus on the dynamics of gene expression. While networks continue to play a significant role in characterising biological relationships, most biomedical network modelling studies focus on 'static' network-based analysis. In this study, we use a temporal, network-based approach to identify and rank genes that exhibit variation in short-course gene expression. We use a Caenorhabditis elegans (C. elegans) gene correlation network obtained from mRNA expression to illustrate the value of the proposed approach, and compare the results of this method to results obtained from traditional differential gene expression analysis. We show that temporal network analysis identifies genes that are inherently different from differentially expressed genes, raising new questions about structural meaning in expression networks and how changes in expression are observed.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"68 1","pages":"171-188"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2019.10021270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many bioinformatics algorithms attempt to extract relevant biological information from datasets obtained at specific data points. However, it is critical to identify changing genes in temporal data so that studies can focus on the dynamics of gene expression. While networks continue to play a significant role in characterising biological relationships, most biomedical network modelling studies focus on 'static' network-based analysis. In this study, we use a temporal, network-based approach to identify and rank genes that exhibit variation in short-course gene expression. We use a Caenorhabditis elegans (C. elegans) gene correlation network obtained from mRNA expression to illustrate the value of the proposed approach, and compare the results of this method to results obtained from traditional differential gene expression analysis. We show that temporal network analysis identifies genes that are inherently different from differentially expressed genes, raising new questions about structural meaning in expression networks and how changes in expression are observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定秀丽隐杆线虫短期基因表达的时间网络变化揭示了结构的波动性
许多生物信息学算法试图从特定数据点获得的数据集中提取相关的生物信息。然而,在时间数据中识别变化的基因是至关重要的,这样研究就可以集中在基因表达的动态上。虽然网络继续在描述生物关系方面发挥重要作用,但大多数生物医学网络建模研究侧重于“静态”基于网络的分析。在这项研究中,我们使用一种基于网络的时间方法来识别和排序在短期基因表达中表现出变异的基因。我们使用从mRNA表达中获得的秀丽隐杆线虫(C. elegans)基因相关网络来说明该方法的价值,并将该方法的结果与传统的差异基因表达分析结果进行比较。我们表明,时间网络分析识别基因本质上不同于差异表达的基因,提出了关于表达网络的结构意义和如何观察表达变化的新问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Random forest with SMOTE and ensemble feature selection for cervical cancer diagnosis A review on speech organ diseases and cancer detection using artificial intelligence In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies Generation of 2D-QSAR and pharmacophore models for fishing better anti-leishmanial therapeutics Computational identification of personal genetic variants in an identical twin sisters' family
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1