{"title":"A Comparison of Wrist- Versus Hip-Worn ActiGraph Sensors for Assessing Physical Activity in Adults: A Systematic Review","authors":"Nolan Gall, R. Sun, M. Smuck","doi":"10.1123/jmpb.2021-0045","DOIUrl":null,"url":null,"abstract":"Introduction: Wrist-worn accelerometer has gained popularity recently in commercial and research use for physical activity tracking. Yet, no consensus exists for standardized wrist-worn data processing, and physical activity data derived from wrist-worn accelerometer cannot be directly compared with data derived from the historically used hip-worn accelerometer. In this work, through a systematic review, we aim to identify and analyze discrepancies between wrist-worn versus hip-worn ActiGraph accelerometers in measuring adult physical activity. Methods: A systematic review was conducted on studies involving free-living data comparison between hip- and wrist-worn ActiGraph accelerometers among adult users. We assessed the population, study protocols, data processing criteria (axis, epoch, wear-time correction, etc.), and outcome measures (step count, sedentary activity time, moderate-to-vigorous physical activity, etc.). Step count and activity count discrepancy were analyzed using meta-analysis, while meta-analysis was not attempted for others due to heterogeneous data processing criteria among the studies. Results: We screened 235 studies with 19 studies qualifying for inclusion in the systematic review. Through meta-analysis, the wrist-worn sensor recorded, on average, 3,537 steps/day more than the hip-worn sensor. Regarding sedentary activity time and moderate-to-vigorous physical activity estimation, the wrist sensor consistently overestimates moderate-to-vigorous physical activity time while underestimating sedentary activity time, with discrepancies ranging from a dozen minutes to several hours. Discussions: Our findings quantified the substantial discrepancies between wrist and hip sensors. It calls attention to the need for a cautious approach to interpreting data from different wear locations. These results may also serve as a reference for data comparisons among studies using different sensor locations.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2021-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Wrist-worn accelerometer has gained popularity recently in commercial and research use for physical activity tracking. Yet, no consensus exists for standardized wrist-worn data processing, and physical activity data derived from wrist-worn accelerometer cannot be directly compared with data derived from the historically used hip-worn accelerometer. In this work, through a systematic review, we aim to identify and analyze discrepancies between wrist-worn versus hip-worn ActiGraph accelerometers in measuring adult physical activity. Methods: A systematic review was conducted on studies involving free-living data comparison between hip- and wrist-worn ActiGraph accelerometers among adult users. We assessed the population, study protocols, data processing criteria (axis, epoch, wear-time correction, etc.), and outcome measures (step count, sedentary activity time, moderate-to-vigorous physical activity, etc.). Step count and activity count discrepancy were analyzed using meta-analysis, while meta-analysis was not attempted for others due to heterogeneous data processing criteria among the studies. Results: We screened 235 studies with 19 studies qualifying for inclusion in the systematic review. Through meta-analysis, the wrist-worn sensor recorded, on average, 3,537 steps/day more than the hip-worn sensor. Regarding sedentary activity time and moderate-to-vigorous physical activity estimation, the wrist sensor consistently overestimates moderate-to-vigorous physical activity time while underestimating sedentary activity time, with discrepancies ranging from a dozen minutes to several hours. Discussions: Our findings quantified the substantial discrepancies between wrist and hip sensors. It calls attention to the need for a cautious approach to interpreting data from different wear locations. These results may also serve as a reference for data comparisons among studies using different sensor locations.