Recent Developments on Statistical and Neural Network Tools Focusing on Biodiesel Quality

Delano Brandes Marques, A. G. O. Filho, A. Romariz, I. Viegas, Djavania A. Luz, A. K. D. B. Filho, S. Labidi, A. Ferraudo
{"title":"Recent Developments on Statistical and Neural Network Tools Focusing on Biodiesel Quality","authors":"Delano Brandes Marques, A. G. O. Filho, A. Romariz, I. Viegas, Djavania A. Luz, A. K. D. B. Filho, S. Labidi, A. Ferraudo","doi":"10.14355/IJCSA.2014.0303.01","DOIUrl":null,"url":null,"abstract":"The performance of both the traditional linear regression and Artificial Neural Network (ANN) techniques has been compared to check the validity to predict the properties of biodiesel and mixtures of diesel and biodiesel. We present on this paper a review on statistical and ANN applications to the Biodiesel quality. A case study is also presented showing the prediction of oxidative stability of Biodiesel using, for the first time, other official quality parameters instead of the chemical composition as input data. In this sense, our hope is that this paper would complement a series of recent review papers and catalyze future research in this rapidly evolving area.","PeriodicalId":39465,"journal":{"name":"International Journal of Computer Science and Applications","volume":"6 1","pages":"97"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14355/IJCSA.2014.0303.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7

Abstract

The performance of both the traditional linear regression and Artificial Neural Network (ANN) techniques has been compared to check the validity to predict the properties of biodiesel and mixtures of diesel and biodiesel. We present on this paper a review on statistical and ANN applications to the Biodiesel quality. A case study is also presented showing the prediction of oxidative stability of Biodiesel using, for the first time, other official quality parameters instead of the chemical composition as input data. In this sense, our hope is that this paper would complement a series of recent review papers and catalyze future research in this rapidly evolving area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物柴油质量统计和神经网络工具的最新进展
比较了传统的线性回归和人工神经网络(ANN)技术在预测生物柴油及其混合物性能方面的有效性。本文综述了统计和人工神经网络在生物柴油质量分析中的应用。本文还提出了一个案例研究,首次使用其他官方质量参数而不是化学成分作为输入数据来预测生物柴油的氧化稳定性。从这个意义上说,我们希望这篇论文能够补充最近的一系列综述论文,并促进这一快速发展领域的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Science and Applications
International Journal of Computer Science and Applications Computer Science-Computer Science Applications
自引率
0.00%
发文量
0
期刊介绍: IJCSA is an international forum for scientists and engineers involved in computer science and its applications to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the IJCSA are selected through rigorous peer review to ensure originality, timeliness, relevance, and readability.
期刊最新文献
Prediction of Mental Health Instability using Machine Learning and Deep Learning Algorithms Prediction of Personality Traits and Suitable Job through an Intelligent Interview Agent using Machine Learning MultiScale Object Detection in Remote Sensing Images using Deep Learning People Counting and Tracking System in Real-Time Using Deep Learning Techniques Covid-19 Chest X-ray Images: Lung Segmentation and Diagnosis using Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1