Mapping of Source and Target Data for Application to Machine Learning Driven Discovery of IS Usability Problems

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2021-05-01 DOI:10.2478/acss-2021-0003
O. Ņikiforova, Vitaly M. Zabiniako, Jurijs Kornienko, M. Gasparoviča-Asīte, Amanda Silina
{"title":"Mapping of Source and Target Data for Application to Machine Learning Driven Discovery of IS Usability Problems","authors":"O. Ņikiforova, Vitaly M. Zabiniako, Jurijs Kornienko, M. Gasparoviča-Asīte, Amanda Silina","doi":"10.2478/acss-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract Improving IS (Information System) end-user experience is one of the most important tasks in the analysis of end-users behaviour, evaluation and identification of its improvement potential. However, the application of Machine Learning methods for the UX (User Experience) usability and effic iency improvement is not widely researched. In the context of the usability analysis, the information about behaviour of end-users could be used as an input, while in the output data the focus should be made on non-trivial or difficult attention-grabbing events and scenarios. The goal of this paper is to identify which data potentially can serve as an input for Machine Learning methods (and accordingly graph theory, transformation methods, etc.), to define dependency between these data and desired output, which can help to apply Machine Learning / graph algorithms to user activity records.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"56 1","pages":"22 - 30"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Improving IS (Information System) end-user experience is one of the most important tasks in the analysis of end-users behaviour, evaluation and identification of its improvement potential. However, the application of Machine Learning methods for the UX (User Experience) usability and effic iency improvement is not widely researched. In the context of the usability analysis, the information about behaviour of end-users could be used as an input, while in the output data the focus should be made on non-trivial or difficult attention-grabbing events and scenarios. The goal of this paper is to identify which data potentially can serve as an input for Machine Learning methods (and accordingly graph theory, transformation methods, etc.), to define dependency between these data and desired output, which can help to apply Machine Learning / graph algorithms to user activity records.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于机器学习驱动的IS可用性问题发现的源数据和目标数据映射
改进信息系统的用户体验是分析最终用户行为、评价和识别其改进潜力的重要任务之一。然而,机器学习方法在用户体验可用性和效率提升方面的应用研究并不广泛。在可用性分析的范围内,有关最终用户行为的信息可以用作输入,而在输出数据中,重点应放在重要或困难的引人注目的事件和场景上。本文的目标是确定哪些数据可能作为机器学习方法(以及相应的图论、转换方法等)的输入,定义这些数据与期望输出之间的依赖关系,这有助于将机器学习/图算法应用于用户活动记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1