Advantage Actor-Critic for Autonomous Intersection Management

John Ayeelyan, Guan-Dee Lee, Hsiu-Chun Hsu, Pao-Ann Hsiung
{"title":"Advantage Actor-Critic for Autonomous Intersection Management","authors":"John Ayeelyan, Guan-Dee Lee, Hsiu-Chun Hsu, Pao-Ann Hsiung","doi":"10.3390/vehicles4040073","DOIUrl":null,"url":null,"abstract":"With increasing urban population, there are more and more vehicles, causing traffic congestion. In order to solve this problem, the development of an efficient and fair intersection management system is an important issue. With the development of intelligent transportation systems, the computing efficiency of vehicles and vehicle-to-vehicle communications are becoming more advanced, which can be used to good advantage in developing smarter systems. As such, Autonomous Intersection Management (AIM) proposals have been widely discussed. This research proposes an intersection management system based on Advantage Actor-Critic (A2C) which is a type of reinforcement learning. This method can lead to a fair and efficient intersection resource allocation strategy being learned. In our proposed approach, we design a reward function and then use this reward function to encourage a fair allocation of intersection resources. The proposed approach uses a brake-safe control to ensure that autonomous moving vehicles travel safely. An experiment is performed using the SUMO simulator to simulate traffic at an isolated intersection, and the experimental performance is compared with Fast First Service (FFS) and GAMEOPT in terms of throughput, fairness, and maximum waiting time. The proposed approach increases fairness by 20% to 40%, and the maximum waiting time is reduced by 20% to 36% in high traffic flow. The inflow rates are increased, average waiting time is reduced, and throughput is increased.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles4040073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With increasing urban population, there are more and more vehicles, causing traffic congestion. In order to solve this problem, the development of an efficient and fair intersection management system is an important issue. With the development of intelligent transportation systems, the computing efficiency of vehicles and vehicle-to-vehicle communications are becoming more advanced, which can be used to good advantage in developing smarter systems. As such, Autonomous Intersection Management (AIM) proposals have been widely discussed. This research proposes an intersection management system based on Advantage Actor-Critic (A2C) which is a type of reinforcement learning. This method can lead to a fair and efficient intersection resource allocation strategy being learned. In our proposed approach, we design a reward function and then use this reward function to encourage a fair allocation of intersection resources. The proposed approach uses a brake-safe control to ensure that autonomous moving vehicles travel safely. An experiment is performed using the SUMO simulator to simulate traffic at an isolated intersection, and the experimental performance is compared with Fast First Service (FFS) and GAMEOPT in terms of throughput, fairness, and maximum waiting time. The proposed approach increases fairness by 20% to 40%, and the maximum waiting time is reduced by 20% to 36% in high traffic flow. The inflow rates are increased, average waiting time is reduced, and throughput is increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自主交叉口管理的优势行为评价
随着城市人口的增加,车辆越来越多,造成了交通拥堵。为了解决这一问题,开发一个高效、公平的交叉口管理系统是一个重要的问题。随着智能交通系统的发展,车辆的计算效率和车对车通信变得越来越先进,这可以很好地用于开发更智能的系统。因此,自主交叉口管理(AIM)的建议被广泛讨论。本研究提出一种基于强化学习的优势行为-批评(A2C)交叉管理系统。该方法可以学习到公平有效的交叉口资源分配策略。在我们提出的方法中,我们设计了一个奖励函数,然后使用这个奖励函数来鼓励交叉口资源的公平分配。所提出的方法使用制动安全控制来确保自动驾驶车辆的安全行驶。利用SUMO仿真器对孤立路口的交通进行了仿真,并在吞吐量、公平性和最大等待时间方面与Fast First Service (FFS)和GAMEOPT进行了比较。在高流量情况下,公平性提高20% ~ 40%,最大等待时间减少20% ~ 36%。流入率增加,平均等待时间减少,吞吐量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Feedback Field-Weakening Techniques for Synchronous Machines with Permanent Magnets Synthetic Drivers’ Performance Measures Related to Vehicle Dynamics to Control Road Safety in Curves Diesel Particle Filter Requirements for Euro 7 Technology Continuously Regenerating Heavy-Duty Applications Hybridisation Concept of Light Vehicles Utilising an Electrified Planetary Gear Set A Co-Simulation Platform with Tire and Brake Thermal Model for the Analysis and Reproduction of Blanking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1