J. Nancy, V. Kalaiselvi, B. Blessymol, P. Yasotha, M. Vishalatchi, S. Pavithra
{"title":"Microwave Synthesis of Triethanolamine-doped Zinc Oxide Nanoparticles","authors":"J. Nancy, V. Kalaiselvi, B. Blessymol, P. Yasotha, M. Vishalatchi, S. Pavithra","doi":"10.13074/jent.2022.06.222454","DOIUrl":null,"url":null,"abstract":"In this work, Triethanolamine-doped Zinc Oxide (ZnO) nanoparticles were synthesized by chemical deposition, associated with the microwave irradiation method. The synthesized zinc oxide nanoparticles were characterized by Scanning Electron Microscope, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Ultra Violet - visible spectroscopy, Photo Luminescence Spectroscopy and Antimicrobial Activity. The prepared sample's surface morphology, crystalline size, functional groups, absorbance and band gap, and emission wavelength were calculated. Antimicrobial activity was performed to predict the zone of inhibition of synthesized nanoparticles.","PeriodicalId":36296,"journal":{"name":"Journal of Water and Environmental Nanotechnology","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environmental Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13074/jent.2022.06.222454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, Triethanolamine-doped Zinc Oxide (ZnO) nanoparticles were synthesized by chemical deposition, associated with the microwave irradiation method. The synthesized zinc oxide nanoparticles were characterized by Scanning Electron Microscope, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Ultra Violet - visible spectroscopy, Photo Luminescence Spectroscopy and Antimicrobial Activity. The prepared sample's surface morphology, crystalline size, functional groups, absorbance and band gap, and emission wavelength were calculated. Antimicrobial activity was performed to predict the zone of inhibition of synthesized nanoparticles.