Mechanical Properties of Mo–Nb–TiC In-situ Composites Synthesized by Hot-Pressing

N. Nomura, K. Yoshimi, S. Hanada
{"title":"Mechanical Properties of Mo–Nb–TiC In-situ Composites Synthesized by Hot-Pressing","authors":"N. Nomura, K. Yoshimi, S. Hanada","doi":"10.2320/MATERTRANS1989.41.1599","DOIUrl":null,"url":null,"abstract":"Mo-40 mol%TiC and Mo-20 mol%Nb-40 mol%TiC in-situ composites were synthesized by hot-pressing mixed Mo, Nb and TiC powders, Both composites consist of two phases, Mo solid solution (A2) and TiC (B 1), after hot-pressing at 2073 K and 70 MPa for 2 h followed by annealing at 2073 K for 24 h. Porosity of hot-pressed compacts decreased by Nb addition to Mo-40 mol%TiC. The composites have different microstructural features. Clusters consisting of fine bcc particles are observed in sizes similar to original Nb powder in Mo-20 mol%Nb-40 mol%TiC, while there are no clusters in Mo-40 mol%TiC. These composites show excellent strength superior to monolithic TiC at high temperatures. The addition of Nb to Mo-40 mol%TiC suppresses effectively intergranular fracture above 1473 K. Furthermore, fracture toughness of these composites is higher than that of monolithic TiC. Fracture toughness of Mo-20 mol%Nb-40 mol%TiC is slightly lower than that of Mo-40 mol%TiC. The obtained results are discussed in relation to microstructural characteristics.","PeriodicalId":18264,"journal":{"name":"Materials Transactions Jim","volume":"56 1","pages":"1599-1604"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Transactions Jim","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/MATERTRANS1989.41.1599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Mo-40 mol%TiC and Mo-20 mol%Nb-40 mol%TiC in-situ composites were synthesized by hot-pressing mixed Mo, Nb and TiC powders, Both composites consist of two phases, Mo solid solution (A2) and TiC (B 1), after hot-pressing at 2073 K and 70 MPa for 2 h followed by annealing at 2073 K for 24 h. Porosity of hot-pressed compacts decreased by Nb addition to Mo-40 mol%TiC. The composites have different microstructural features. Clusters consisting of fine bcc particles are observed in sizes similar to original Nb powder in Mo-20 mol%Nb-40 mol%TiC, while there are no clusters in Mo-40 mol%TiC. These composites show excellent strength superior to monolithic TiC at high temperatures. The addition of Nb to Mo-40 mol%TiC suppresses effectively intergranular fracture above 1473 K. Furthermore, fracture toughness of these composites is higher than that of monolithic TiC. Fracture toughness of Mo-20 mol%Nb-40 mol%TiC is slightly lower than that of Mo-40 mol%TiC. The obtained results are discussed in relation to microstructural characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热压原位合成Mo-Nb-TiC复合材料的力学性能
将Mo、Nb和TiC粉末热压混合制备Mo-40 mol%TiC和Mo-20 mol%Nb-40 mol%TiC原位复合材料,两种复合材料均由Mo固溶体(A2)和TiC (b1)两相组成,在2073 K和70 MPa下热压2 h,然后在2073 K下退火24 h。复合材料具有不同的显微组织特征。在Mo-20 mol%Nb-40 mol%TiC中观察到细小的bcc颗粒组成的团簇,其大小与原始Nb粉末相似,而在Mo-40 mol%TiC中没有团簇。这些复合材料在高温下表现出优于单片TiC的优异强度。在Mo-40 mol%TiC中加入Nb能有效抑制1473 K以上的晶间断裂。复合材料的断裂韧性高于整体TiC材料。Mo-20 mol%Nb-40 mol%TiC的断裂韧性略低于Mo-40 mol%TiC。讨论了所得结果与微观结构特征的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solid state diffusion bonding of silicon nitride using vanadium foils : Structural and functional control of materials through solid-solid phase transformations in high magnetic field Characteristics of paramagnetic and diamagnetic anisotropy which induce magnetic alignment of micron-sized non-ferromagnetic particles : Structural and functional control of materials through solid-solid phase transformations in high magnetic field Combination of triboelectrostatic separation and air tabling for sorting plastics from a multi-component plastic mixture : New systems and processes in recycling and high performance waste treatments Impurity removal from carbon saturated liquid iron using lead solvent : New systems and processes in recycling and high performance waste treatments Surface treatment of magnesium alloys by artificial corrosion-oxidization method : Special issue on platform science and technology for advanced magnesium alloys, II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1