Kinetics of Enteroviral Inactivation by Ozone

D. Roy, E. Chian, R. S. Engelbrecht
{"title":"Kinetics of Enteroviral Inactivation by Ozone","authors":"D. Roy, E. Chian, R. S. Engelbrecht","doi":"10.1061/JEEGAV.0001223","DOIUrl":null,"url":null,"abstract":"An analysis of enteroviral inactivation by ozone was performed using kinetic expressions developed from mass balance information obtained from a continuous flow reactor. The rate of viral inactivation was observed to be directly proportional to the residual ozone concentration and the density of viruses raised to the power of 0.69. The effect of temperature on the rate of viral inactivation was evaluated using Arrhenius and Eyring's equations. The activation energy and entropy of the overall inactivation reaction were observed to be 3.6 kcal and -13.66 cal/uaoK, respectively. The low value of activation energy implies that the viral inactivation reaction is controlled by mass transfer of ozone through the viral protein coat. The negative value of entropy indicates that a more orderly arrangement of viral molecules occurred during the ozone inactivation process.","PeriodicalId":17335,"journal":{"name":"Journal of the Environmental Engineering Division","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1981-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Environmental Engineering Division","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/JEEGAV.0001223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

An analysis of enteroviral inactivation by ozone was performed using kinetic expressions developed from mass balance information obtained from a continuous flow reactor. The rate of viral inactivation was observed to be directly proportional to the residual ozone concentration and the density of viruses raised to the power of 0.69. The effect of temperature on the rate of viral inactivation was evaluated using Arrhenius and Eyring's equations. The activation energy and entropy of the overall inactivation reaction were observed to be 3.6 kcal and -13.66 cal/uaoK, respectively. The low value of activation energy implies that the viral inactivation reaction is controlled by mass transfer of ozone through the viral protein coat. The negative value of entropy indicates that a more orderly arrangement of viral molecules occurred during the ozone inactivation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
臭氧对肠病毒灭活的动力学研究
利用从连续流反应器获得的质量平衡信息开发的动力学表达式,对臭氧灭活肠道病毒进行了分析。观察到病毒的失活率与残余臭氧浓度和病毒密度成正比,其倍数为0.69。利用Arrhenius和Eyring方程,对温度对病毒灭活速率的影响进行了评价。整个失活反应的活化能和熵分别为3.6 kcal和-13.66 cal/uaoK。活化能的低值意味着病毒的失活反应是由臭氧通过病毒蛋白外壳的传质控制的。熵值为负值表明在臭氧灭活过程中病毒分子的排列更加有序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Osmosis: Mass Transmission Coefficient-Based Models for Evaluation of Concentration Polarization under Different Conditions Atmospheric Contributions of Nitrate to Stormwater Runoff from Two Urban Watersheds Nitrate Reduction by Surface-Bound Fe(II) on Solid Surfaces at Near-Neutral pH and Ambient Temperature Oxidative Degradation of Quinoline Using Nanoscale Zero-Valent Iron Supported by Granular Activated Carbon Sorption and Desorption of Testosterone at Environmentally Relevant Levels: Effects of Aquatic Conditions and Soil Particle Size Fractions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1