Ming Chen, Jinghua Yan, Tieliang Gao, Yuhua Li, Huan Ma
{"title":"Duplicate Image Representation Based on Semi-Supervised Learning","authors":"Ming Chen, Jinghua Yan, Tieliang Gao, Yuhua Li, Huan Ma","doi":"10.4018/ijghpc.301578","DOIUrl":null,"url":null,"abstract":"For duplicate image detection, the more advanced large-scale image retrieval systems in recent years have mainly used the Bag-of-Feature ( BoF ) model to meet the real-time. However, due to the lack of semantic information in the training process of the visual dictionary, BoF model cannot guarantee semantic similarity. Therefore, this paper proposes a duplicate image representation algorithm based on semi-supervised learning. This algorithm first generates semi-supervised hashes, and then maps the image local descriptors to binary codes based on semi-supervised learning. Finally, an image is represented by a frequency histogram of binary codes. Since the semantic information can be effectively introduced through the construction of the marker matrix and the classification matrix during the training process, semi-supervised learning can not only guarantee the metric similarity of the local descriptors, but also guarantee the semantic similarity. And the experimental results also show this algorithm has a better retrieval effect compared with traditional algorithms.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"66 1","pages":"1-13"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
For duplicate image detection, the more advanced large-scale image retrieval systems in recent years have mainly used the Bag-of-Feature ( BoF ) model to meet the real-time. However, due to the lack of semantic information in the training process of the visual dictionary, BoF model cannot guarantee semantic similarity. Therefore, this paper proposes a duplicate image representation algorithm based on semi-supervised learning. This algorithm first generates semi-supervised hashes, and then maps the image local descriptors to binary codes based on semi-supervised learning. Finally, an image is represented by a frequency histogram of binary codes. Since the semantic information can be effectively introduced through the construction of the marker matrix and the classification matrix during the training process, semi-supervised learning can not only guarantee the metric similarity of the local descriptors, but also guarantee the semantic similarity. And the experimental results also show this algorithm has a better retrieval effect compared with traditional algorithms.