{"title":"Widening the NLP Pipeline for spoken Language Processing","authors":"S. Bangalore","doi":"10.1109/SLT.2006.326787","DOIUrl":null,"url":null,"abstract":"Summary form only given. A typical text-based natural language application (eg. machine translation, summarization, information extraction) consists of a pipeline of preprocessing steps such as tokenization, stemming, part-of-speech tagging, named entity detection, chunking, parsing. Information flows downstream through the preprocessing steps along a narrow pipe: each step transforms a single input string into a single best solution string. However, this narrow pipe is limiting for two reasons: First, since each of the preprocessing steps are erroneous, producing a single best solution could magnify the error propogation down the pipeline. Second, the preprocessing steps are forced to resolve genuine ambiguity prematurely. While the widening of the pipeline can potentially benefit text-based language applications, it is imperative for spoken language processing where the output from the speech recognizer is typically a word lattice/graph. In this talk, we review how such a goal has been accomplished in tasks such as spoken language understanding, speech translation and multimodal language processing. We will also sketch methods that encode the preprocessing steps as finite-state transductions in order to exploit composition of finite-state transducers as a general constraint propogation method.","PeriodicalId":74811,"journal":{"name":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","volume":"48 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2006.326787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. A typical text-based natural language application (eg. machine translation, summarization, information extraction) consists of a pipeline of preprocessing steps such as tokenization, stemming, part-of-speech tagging, named entity detection, chunking, parsing. Information flows downstream through the preprocessing steps along a narrow pipe: each step transforms a single input string into a single best solution string. However, this narrow pipe is limiting for two reasons: First, since each of the preprocessing steps are erroneous, producing a single best solution could magnify the error propogation down the pipeline. Second, the preprocessing steps are forced to resolve genuine ambiguity prematurely. While the widening of the pipeline can potentially benefit text-based language applications, it is imperative for spoken language processing where the output from the speech recognizer is typically a word lattice/graph. In this talk, we review how such a goal has been accomplished in tasks such as spoken language understanding, speech translation and multimodal language processing. We will also sketch methods that encode the preprocessing steps as finite-state transductions in order to exploit composition of finite-state transducers as a general constraint propogation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩大口语语言处理的NLP管道
只提供摘要形式。一个典型的基于文本的自然语言应用程序(例如:机器翻译(摘要、信息提取)由一系列预处理步骤组成,如标记化、词干提取、词性标注、命名实体检测、分块、解析。信息沿着一条狭窄的管道通过预处理步骤向下游流动:每一步都将单个输入字符串转换为单个最佳解决方案字符串。然而,这种狭窄的管道有两个限制:首先,由于每个预处理步骤都是错误的,因此产生单个最佳解决方案可能会放大错误在管道中的传播。其次,预处理步骤被迫过早地解决真正的歧义。虽然管道的扩大可能有利于基于文本的语言应用程序,但对于语音处理来说,它是必要的,因为语音识别器的输出通常是一个词格/图。在这次演讲中,我们回顾了如何在口语理解、语音翻译和多模态语言处理等任务中实现这一目标。我们还将概述将预处理步骤编码为有限状态换能器的方法,以便利用有限状态换能器的组合作为一般约束传播方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STYLETTS-VC: ONE-SHOT VOICE CONVERSION BY KNOWLEDGE TRANSFER FROM STYLE-BASED TTS MODELS. COMPUTATIONAL ANALYSIS OF TRAJECTORIES OF LINGUISTIC DEVELOPMENT IN AUTISM. ROBUST DETECTION OF VOICED SEGMENTS IN SAMPLES OF EVERYDAY CONVERSATIONS USING UNSUPERVISED HMMS. Efficient prior and incremental beam width control to suppress excessive speech recognition time based on score range estimation Information Extraction from speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1