I. Voicu, R. Alexandrescu, R. Cireasa, I. Morjan, D. Dumitras, S. Mulenko, A. N. Pogorelyǐ, A. Andrei
{"title":"A Comparative Study of Iron-Based Film Deposition from Iron Pentacarbonyl at 248 nm and 488 nm","authors":"I. Voicu, R. Alexandrescu, R. Cireasa, I. Morjan, D. Dumitras, S. Mulenko, A. N. Pogorelyǐ, A. Andrei","doi":"10.1051/JPHYSCOL:1995581","DOIUrl":null,"url":null,"abstract":"Thin film deposition by laser irradiation of Fe(CO) 5 at two radiation wavelengths (248 nm and 488 nm) was performed. A perpendicular geometry of irradiation was used. Maximum deposition rates of 14 A/s at λ = 248 nm and 1.5 A/s at λ = 488 nm were obtained, indicating a diffusion limited process. SEM analysis of film morphologies showed significant differencies in the nucleation and growth of films deposited at 248 nm and 488 nm. XPS surface analysis revealed a higher carbon content and carbidic phases in the surface of films deposited at 488 nm on SiO 2 (quartz) substrates. Oxidized surface Fe phases were found in films, with increasing the exposure time to laser radiation. The film properties are discussed in connection with irradiation conditions and specific mechanisms involved.","PeriodicalId":17944,"journal":{"name":"Le Journal De Physique Colloques","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Le Journal De Physique Colloques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSCOL:1995581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Thin film deposition by laser irradiation of Fe(CO) 5 at two radiation wavelengths (248 nm and 488 nm) was performed. A perpendicular geometry of irradiation was used. Maximum deposition rates of 14 A/s at λ = 248 nm and 1.5 A/s at λ = 488 nm were obtained, indicating a diffusion limited process. SEM analysis of film morphologies showed significant differencies in the nucleation and growth of films deposited at 248 nm and 488 nm. XPS surface analysis revealed a higher carbon content and carbidic phases in the surface of films deposited at 488 nm on SiO 2 (quartz) substrates. Oxidized surface Fe phases were found in films, with increasing the exposure time to laser radiation. The film properties are discussed in connection with irradiation conditions and specific mechanisms involved.