Fusing Syntax and Semantics-Based Graph Convolutional Network for Aspect-Based Sentiment Analysis

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2023-03-17 DOI:10.4018/ijdwm.319803
Jinhui Feng, Shaohua Cai, Kuntao Li, Yifan Chen, Qianhua Cai, Hongya Zhao
{"title":"Fusing Syntax and Semantics-Based Graph Convolutional Network for Aspect-Based Sentiment Analysis","authors":"Jinhui Feng, Shaohua Cai, Kuntao Li, Yifan Chen, Qianhua Cai, Hongya Zhao","doi":"10.4018/ijdwm.319803","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis (ABSA) aims to classify the sentiment polarity of a given aspect in a sentence or document, which is a fine-grained task of natural language processing. Recent ABSA methods mainly focus on exploiting the syntactic information, the semantic information and both. Research on cognition theory reveals that the syntax an*/874d the semantics have effects on each other. In this work, a graph convolutional network-based model that fuses the syntactic information and semantic information in line with the cognitive practice is proposed. To start with, the GCN is taken to extract syntactic information on the syntax dependency tree. Then, the semantic graph is constructed via a multi-head self-attention mechanism and encoded by GCN. Furthermore, a parameter-sharing GCN is developed to capture the common information between the semantics and the syntax. Experiments conducted on three benchmark datasets (Laptop14, Restaurant14 and Twitter) validate that the proposed model achieves compelling performance comparing with the state-of-the-art models.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.319803","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect-based sentiment analysis (ABSA) aims to classify the sentiment polarity of a given aspect in a sentence or document, which is a fine-grained task of natural language processing. Recent ABSA methods mainly focus on exploiting the syntactic information, the semantic information and both. Research on cognition theory reveals that the syntax an*/874d the semantics have effects on each other. In this work, a graph convolutional network-based model that fuses the syntactic information and semantic information in line with the cognitive practice is proposed. To start with, the GCN is taken to extract syntactic information on the syntax dependency tree. Then, the semantic graph is constructed via a multi-head self-attention mechanism and encoded by GCN. Furthermore, a parameter-sharing GCN is developed to capture the common information between the semantics and the syntax. Experiments conducted on three benchmark datasets (Laptop14, Restaurant14 and Twitter) validate that the proposed model achieves compelling performance comparing with the state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合语法和语义的图卷积网络用于面向方面的情感分析
基于方面的情感分析(ABSA)旨在对句子或文档中给定方面的情感极性进行分类,是自然语言处理中的一项细粒度任务。目前的ABSA方法主要集中在句法信息和语义信息的开发上。认知理论研究表明,句法和语义是相互影响的。本文提出了一种符合认知实践的基于图卷积网络的句法信息和语义信息融合模型。首先,使用GCN提取语法依赖树上的语法信息。然后,通过多头自关注机制构建语义图,并进行GCN编码。在此基础上,提出了一种参数共享GCN,用于捕获语义和语法之间的公共信息。在三个基准数据集(Laptop14, Restaurant14和Twitter)上进行的实验验证了所提出的模型与最先进的模型相比取得了令人信服的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1