Demetris Coleman, Maria L. Castaño, Osama Ennasr, Xiaobo Tan
{"title":"Backstepping-Based Trajectory Tracking for Underwater Gliders","authors":"Demetris Coleman, Maria L. Castaño, Osama Ennasr, Xiaobo Tan","doi":"10.1115/dscc2019-9028","DOIUrl":null,"url":null,"abstract":"\n Autonomous underwater gliders have become valuable tools for a myriad of applications ranging from ocean exploration to fish tracking to environmental sampling. To be suitable for these types of applications, precise sensing and monitoring is desired, which makes accurate trajectory control important. However, highly nonlinear under-actuated dynamics present significant challenges in control of gliders. In this work a backstepping-based controller is proposed for an underwater glider to track a desired position and heading reference in the sagittal plane with only two control inputs, the buoyancy and center of gravity along the longitudinal direction. In particular,the under-actuation issue is addressed by exploiting the coupled dynamics and introducing a new modified error that combines the tracking errors of heading and position references. In addition, an auxiliary system is incorporated to account for input constraints. Finally, a sliding mode observer is designed to obtain the estimates of body-fixed velocities, to facilitate practical implementation of the designed controller. The effectiveness of the proposed control scheme is demonstrated via simulations and its advantages are shown via comparison with a PID controller.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"103 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Autonomous underwater gliders have become valuable tools for a myriad of applications ranging from ocean exploration to fish tracking to environmental sampling. To be suitable for these types of applications, precise sensing and monitoring is desired, which makes accurate trajectory control important. However, highly nonlinear under-actuated dynamics present significant challenges in control of gliders. In this work a backstepping-based controller is proposed for an underwater glider to track a desired position and heading reference in the sagittal plane with only two control inputs, the buoyancy and center of gravity along the longitudinal direction. In particular,the under-actuation issue is addressed by exploiting the coupled dynamics and introducing a new modified error that combines the tracking errors of heading and position references. In addition, an auxiliary system is incorporated to account for input constraints. Finally, a sliding mode observer is designed to obtain the estimates of body-fixed velocities, to facilitate practical implementation of the designed controller. The effectiveness of the proposed control scheme is demonstrated via simulations and its advantages are shown via comparison with a PID controller.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.