Electro-magnetic Visco-plastic Nanofluid Flow Considering Buongiorno Two-component Model in Frames of Darcy-Forchheimer Porosity, Transpiration and Joule Heating

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Magnetics Pub Date : 2023-06-30 DOI:10.4283/jmag.2023.28.2.187
Shuguang Li, M. Waqas, Salma AlQahtani, M. Khan
{"title":"Electro-magnetic Visco-plastic Nanofluid Flow Considering Buongiorno Two-component Model in Frames of Darcy-Forchheimer Porosity, Transpiration and Joule Heating","authors":"Shuguang Li, M. Waqas, Salma AlQahtani, M. Khan","doi":"10.4283/jmag.2023.28.2.187","DOIUrl":null,"url":null,"abstract":"Enhancing heat transfer is of utmost importance in modern industrial applications. Pure liquids for illustration ethylene glycol, propylene glycol and water having lower conductivity are commonly used as cooling liquids in distinct applications. This approach helps conserve and optimize the enhancement of heat transportation. However, in order to achieve enhanced thermal efficiency, state-of-the-art liquids known as nanoliquids have been recommended. Thus the Buongiorno two-component nanoliquid model, which exhibits superior thermal efficiency compared to the aforementioned standard cooling liquids is being considered for formulating and analyzing the behavior of Casson nanoliquid configured by cylindrical convected surface. The problem formulation incorporates various factors such as Darcy-Forchheimer porosity, thermophoresis, mag-netohydrodynamics, Brownian diffusion, suction/injection and Joule heating. Boundary-layer stretching flow is formulated. Dimensionless differential form from governing nonlinear problems is achieved by employing relevant variables. The application of the homotopy procedure results in convergent solutions for strongly nonlinear systems. The graphs are used to reveal the plots of significant factors in the analysis.","PeriodicalId":16147,"journal":{"name":"Journal of Magnetics","volume":"91 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4283/jmag.2023.28.2.187","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Enhancing heat transfer is of utmost importance in modern industrial applications. Pure liquids for illustration ethylene glycol, propylene glycol and water having lower conductivity are commonly used as cooling liquids in distinct applications. This approach helps conserve and optimize the enhancement of heat transportation. However, in order to achieve enhanced thermal efficiency, state-of-the-art liquids known as nanoliquids have been recommended. Thus the Buongiorno two-component nanoliquid model, which exhibits superior thermal efficiency compared to the aforementioned standard cooling liquids is being considered for formulating and analyzing the behavior of Casson nanoliquid configured by cylindrical convected surface. The problem formulation incorporates various factors such as Darcy-Forchheimer porosity, thermophoresis, mag-netohydrodynamics, Brownian diffusion, suction/injection and Joule heating. Boundary-layer stretching flow is formulated. Dimensionless differential form from governing nonlinear problems is achieved by employing relevant variables. The application of the homotopy procedure results in convergent solutions for strongly nonlinear systems. The graphs are used to reveal the plots of significant factors in the analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑dancy - forchheimer孔隙、蒸腾和焦耳加热框架下Buongiorno双分量模型的电磁粘塑性纳米流体流动
加强传热在现代工业应用中是至关重要的。纯液体乙二醇,丙二醇和水具有较低的电导率通常用作冷却液体在不同的应用。这种方法有助于保存和优化热传输的增强。然而,为了提高热效率,最先进的液体被称为纳米液体被推荐。因此,考虑采用比上述标准冷却液具有更高热效率的Buongiorno双组分纳米液体模型来配制和分析圆柱对流表面配置的卡森纳米液体的行为。该问题的公式包含了各种因素,如达西-福希海默孔隙度、热泳、磁网流体动力学、布朗扩散、吸入/注入和焦耳加热。建立了边界层拉伸流动模型。通过引入相关变量,得到控制非线性问题的无因次微分形式。应用同伦过程得到了强非线性系统的收敛解。图表用于显示分析中重要因素的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnetics
Journal of Magnetics MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.00
自引率
20.00%
发文量
44
审稿时长
2.3 months
期刊介绍: The JOURNAL OF MAGNETICS provides a forum for the discussion of original papers covering the magnetic theory, magnetic materials and their properties, magnetic recording materials and technology, spin electronics, and measurements and applications. The journal covers research papers, review letters, and notes.
期刊最新文献
Research on the Performance of Magnetorheological Semi-Active Suspension with Stepped By-Pass Valve based on Fuzzy PID Control Four Stage Induction Coilgun System Design and Analytical Calculation of Electromagnetic Expansion Force on the Stator Coil in the System Polyvinylpyrrolidone-assisted Solvothermal Synthesis of Fe<SUB>3</SUB>O<SUB>4</SUB> Nanoclusters Design and Analysis of the Interior Permanent-Magnet Machine Considering Slot-pole Combination and Rotor Topology Study on the Magnetic Rate Sensitivity and Shear Properties of Magnetorheological Shear Thickening Fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1