{"title":"Stimulated Oil Reservoir Volume Estimation of Prominent US Tight Oil Formations","authors":"P. Panja, R. Velasco, M. Deo","doi":"10.2118/191774-MS","DOIUrl":null,"url":null,"abstract":"\n In this work, we estimate the Stimulated Original Oil In Place (SOOIP) of hydraulically fractured horizontal wells in prominent shale plays. This is done by compiling production data from hundreds of wells belonging to the Bakken, Niobrara, Wolfcamp, Eagle Ford, Bone Springs, and Woodford totaling over 2,500 wells. Additionally, we present probabilistic distributions of SOOIP with mean, standard deviation, P10, P50, and P90 estimates for each play.\n To circumvent the challenge of data availability for each well, we use the findings of a previous study where all reservoir unknowns are grouped into two major parameters. One of these parameters, alpha, is a function of the stimulated reservoir volume, compressibility, and pressure drawdown, where the last two are unknowns. While alpha is determined with high confidence for each well, we account for the uncertainty of compressibility and drawdown values across wells by assuming a normal distribution for these parameters. Lastly, by incorporating 1 million Monte Carlo samplings and a Mersenne Twister random number generator we estimate SOOIP distributions for each play with varying degrees of confidence.\n The final results show that the Niobrara and Bakken have the highest mean SOOIP values per well while the values for the Woodford and Bone Springs are the lowest among all six plays considered. Volumetric calculations using data from the literature qualitatively corroborate these findings. New insight on the stimulated volumes per well for prominent shale plays can be derived from these results as they correlate to horizontal well length, formation thickness, and hydraulic fracture half-lengths in each play.","PeriodicalId":11155,"journal":{"name":"Day 2 Thu, September 06, 2018","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, September 06, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191774-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we estimate the Stimulated Original Oil In Place (SOOIP) of hydraulically fractured horizontal wells in prominent shale plays. This is done by compiling production data from hundreds of wells belonging to the Bakken, Niobrara, Wolfcamp, Eagle Ford, Bone Springs, and Woodford totaling over 2,500 wells. Additionally, we present probabilistic distributions of SOOIP with mean, standard deviation, P10, P50, and P90 estimates for each play.
To circumvent the challenge of data availability for each well, we use the findings of a previous study where all reservoir unknowns are grouped into two major parameters. One of these parameters, alpha, is a function of the stimulated reservoir volume, compressibility, and pressure drawdown, where the last two are unknowns. While alpha is determined with high confidence for each well, we account for the uncertainty of compressibility and drawdown values across wells by assuming a normal distribution for these parameters. Lastly, by incorporating 1 million Monte Carlo samplings and a Mersenne Twister random number generator we estimate SOOIP distributions for each play with varying degrees of confidence.
The final results show that the Niobrara and Bakken have the highest mean SOOIP values per well while the values for the Woodford and Bone Springs are the lowest among all six plays considered. Volumetric calculations using data from the literature qualitatively corroborate these findings. New insight on the stimulated volumes per well for prominent shale plays can be derived from these results as they correlate to horizontal well length, formation thickness, and hydraulic fracture half-lengths in each play.