Improved Cooperative Stereo Matching for Dynamic Vision Sensors with Ground Truth Evaluation

E. Piatkowska, J. Kogler, A. Belbachir, M. Gelautz
{"title":"Improved Cooperative Stereo Matching for Dynamic Vision Sensors with Ground Truth Evaluation","authors":"E. Piatkowska, J. Kogler, A. Belbachir, M. Gelautz","doi":"10.1109/CVPRW.2017.51","DOIUrl":null,"url":null,"abstract":"Event-based vision, as realized by bio-inspired Dynamic Vision Sensors (DVS), is gaining more and more popularity due to its advantages of high temporal resolution, wide dynamic range and power efficiency at the same time. Potential applications include surveillance, robotics, and autonomous navigation under uncontrolled environment conditions. In this paper, we deal with event-based vision for 3D reconstruction of dynamic scene content by using two stationary DVS in a stereo configuration. We focus on a cooperative stereo approach and suggest an improvement over a previously published algorithm that reduces the measured mean error by over 50 percent. An available ground truth data set for stereo event data is utilized to analyze the algorithm's sensitivity to parameter variation and for comparison with competing techniques.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"05 1","pages":"370-377"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Event-based vision, as realized by bio-inspired Dynamic Vision Sensors (DVS), is gaining more and more popularity due to its advantages of high temporal resolution, wide dynamic range and power efficiency at the same time. Potential applications include surveillance, robotics, and autonomous navigation under uncontrolled environment conditions. In this paper, we deal with event-based vision for 3D reconstruction of dynamic scene content by using two stationary DVS in a stereo configuration. We focus on a cooperative stereo approach and suggest an improvement over a previously published algorithm that reduces the measured mean error by over 50 percent. An available ground truth data set for stereo event data is utilized to analyze the algorithm's sensitivity to parameter variation and for comparison with competing techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地面真值评估的动态视觉传感器改进协同立体匹配
生物动态视觉传感器(DVS)实现的基于事件的视觉以其高时间分辨率、宽动态范围和高能效等优点得到越来越广泛的应用。潜在的应用包括监视、机器人和在不受控制的环境条件下的自主导航。在本文中,我们通过在立体配置中使用两个固定的DVS来处理基于事件的视觉用于动态场景内容的3D重建。我们专注于合作立体方法,并建议对先前发表的算法进行改进,该算法可将测量平均误差降低50%以上。利用现有的立体事件地面真值数据集,分析了该算法对参数变化的敏感性,并与竞争技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1