M. Sharma, Sajan Preet, Jyotirmay Mathur, A. Chowdhury, S. Mathur
{"title":"Thermal performance analysis of naturally ventilated and perforated sheet based double skin facade system for hot summer conditions","authors":"M. Sharma, Sajan Preet, Jyotirmay Mathur, A. Chowdhury, S. Mathur","doi":"10.1080/14733315.2021.1901003","DOIUrl":null,"url":null,"abstract":"Abstract A new skin of perforated sheets in the cavity of double skin facades (DSF) system is introduced for efficient heat removal from the cavity in hot summer conditions. In this paper, the analytical solution is developed to estimate the thermal performance of the double-skin façade system with and without perforated sheet operating under natural ventilation mode. This analytical model is designed to predict the solar heat gain coefficient (SHGC) for hot summer conditions. An experimental investigation has also been conducted to validate the proposed analytical model. Results showed good agreement between the measured and calculated value of SHGC for DSF system with and without perforated sheet. It is observed that the addition of a perforated sheet reduces the SHGC by nearly 51.5% as compared to DSF system. Perforated sheets enable a better stack effect within the air cavity zone and thereby improve heat transfer characteristics. Therefore, the benefit of the perforated sheet within the air cavity of DSF system is profound over conventional DSF system.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"60 1","pages":"263 - 283"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2021.1901003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract A new skin of perforated sheets in the cavity of double skin facades (DSF) system is introduced for efficient heat removal from the cavity in hot summer conditions. In this paper, the analytical solution is developed to estimate the thermal performance of the double-skin façade system with and without perforated sheet operating under natural ventilation mode. This analytical model is designed to predict the solar heat gain coefficient (SHGC) for hot summer conditions. An experimental investigation has also been conducted to validate the proposed analytical model. Results showed good agreement between the measured and calculated value of SHGC for DSF system with and without perforated sheet. It is observed that the addition of a perforated sheet reduces the SHGC by nearly 51.5% as compared to DSF system. Perforated sheets enable a better stack effect within the air cavity zone and thereby improve heat transfer characteristics. Therefore, the benefit of the perforated sheet within the air cavity of DSF system is profound over conventional DSF system.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).