Spatio-temporal representation for long-term anticipation of human presence in service robotics

Tomáš Vintr, Zhi Yan, T. Duckett, T. Krajník
{"title":"Spatio-temporal representation for long-term anticipation of human presence in service robotics","authors":"Tomáš Vintr, Zhi Yan, T. Duckett, T. Krajník","doi":"10.1109/ICRA.2019.8793534","DOIUrl":null,"url":null,"abstract":"We propose an efficient spatio-temporal model for mobile autonomous robots operating in human populated environments. Our method aims to model periodic temporal patterns of people presence, which are based on peoples’ routines and habits. The core idea is to project the time onto a set of wrapped dimensions that represent the periodicities of people presence. Extending a 2D spatial model with this multidimensional representation of time results in a memory efficient spatio-temporal model. This model is capable of long-term predictions of human presence, allowing mobile robots to schedule their services better and to plan their paths. The experimental evaluation, performed over datasets gathered by a robot over a period of several weeks, indicates that the proposed method achieves more accurate predictions than the previous state of the art used in robotics.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"10 1","pages":"2620-2626"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We propose an efficient spatio-temporal model for mobile autonomous robots operating in human populated environments. Our method aims to model periodic temporal patterns of people presence, which are based on peoples’ routines and habits. The core idea is to project the time onto a set of wrapped dimensions that represent the periodicities of people presence. Extending a 2D spatial model with this multidimensional representation of time results in a memory efficient spatio-temporal model. This model is capable of long-term predictions of human presence, allowing mobile robots to schedule their services better and to plan their paths. The experimental evaluation, performed over datasets gathered by a robot over a period of several weeks, indicates that the proposed method achieves more accurate predictions than the previous state of the art used in robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
服务机器人中人类存在长期预期的时空表征
我们提出了一个有效的时空模型,用于在人类居住的环境中运行的移动自主机器人。我们的方法旨在基于人们的日常活动和习惯,对人们存在的周期性时间模式进行建模。其核心思想是将时间投射到一组封装的维度上,这些维度表示人们出现的周期性。用这种时间的多维表示来扩展二维空间模型,可以得到有效记忆的时空模型。这个模型能够长期预测人类的存在,允许移动机器人更好地安排他们的服务,并规划他们的路径。实验评估是对机器人在几周内收集的数据集进行的,表明所提出的方法比以前在机器人技术中使用的技术达到了更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1