{"title":"The intensional semantic conceptual graph matching algorithm based on conceptual sub-graph weight self-adjustment","authors":"Xiong Li-yan, Zeng Hui, C. Jianjun","doi":"10.1504/IJCSE.2018.10010356","DOIUrl":null,"url":null,"abstract":"Semantic computing is an important task in the research on natural language processing. On solving the problem of the inaccurate conceptual graph matching, this paper proposes an algorithm to compute the similarity of conceptual graphs, based on conceptual sub-graph weight self-adjustment. The algorithm works by basing itself on the intensional logic model of Chinese concept connotation, using intensional semantic conceptual graph as knowledge representation method and combining itself with the computation method of E-A-V structures. When computing the similarity of conceptual graphs, the algorithm can give the homologous weight to the sub-graph according to the proportion of how much information the sub-graph contains in the whole conceptual graph. Therefore, it can achieve better similarity results, which has also been proved in the experiments of this paper.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"17 1","pages":"53-62"},"PeriodicalIF":1.4000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2018.10010356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Semantic computing is an important task in the research on natural language processing. On solving the problem of the inaccurate conceptual graph matching, this paper proposes an algorithm to compute the similarity of conceptual graphs, based on conceptual sub-graph weight self-adjustment. The algorithm works by basing itself on the intensional logic model of Chinese concept connotation, using intensional semantic conceptual graph as knowledge representation method and combining itself with the computation method of E-A-V structures. When computing the similarity of conceptual graphs, the algorithm can give the homologous weight to the sub-graph according to the proportion of how much information the sub-graph contains in the whole conceptual graph. Therefore, it can achieve better similarity results, which has also been proved in the experiments of this paper.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.