Using Neural Networks for Heuristic Grasp Planning in Random Bin Picking

Felix Spenrath, A. Pott
{"title":"Using Neural Networks for Heuristic Grasp Planning in Random Bin Picking","authors":"Felix Spenrath, A. Pott","doi":"10.1109/COASE.2018.8560458","DOIUrl":null,"url":null,"abstract":"The fast determination of collision-free grasps is a key aspect in random bin picking. Heuristic search algorithms provide a feasible solution to this problem, using statistical data on the likelihood of finding a valid solution on elements with certain parameters. In this paper, we propose the use of several neural networks in such algorithms to accelerate the search while preserving the reliability. This is done by training the neural networks on the heuristic search trees of previous situations and using the output of these neural networks as part of the heuristic function. Finally, the effect of these neural networks is experimentally analyzed with sensor data from a working bin picking system with an industrial dual arm robot and it is shown that the calculation time in this setup is reduced by up to 45%.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"258-263"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The fast determination of collision-free grasps is a key aspect in random bin picking. Heuristic search algorithms provide a feasible solution to this problem, using statistical data on the likelihood of finding a valid solution on elements with certain parameters. In this paper, we propose the use of several neural networks in such algorithms to accelerate the search while preserving the reliability. This is done by training the neural networks on the heuristic search trees of previous situations and using the output of these neural networks as part of the heuristic function. Finally, the effect of these neural networks is experimentally analyzed with sensor data from a working bin picking system with an industrial dual arm robot and it is shown that the calculation time in this setup is reduced by up to 45%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的随机拣箱启发式抓取规划
快速确定无碰撞抓取是随机拣箱中的一个关键问题。启发式搜索算法为这个问题提供了一个可行的解决方案,它使用关于在具有特定参数的元素上找到有效解决方案的可能性的统计数据。在本文中,我们提出在这种算法中使用几个神经网络来加速搜索,同时保持可靠性。这是通过在先前情况的启发式搜索树上训练神经网络并使用这些神经网络的输出作为启发式函数的一部分来完成的。最后,利用工业双臂机器人的拣仓系统的传感器数据对神经网络的效果进行了实验分析,结果表明,在这种设置下,计算时间最多减少了45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1