Simultaneous Pipelining in QPipe: Exploiting Work Sharing Opportunities Across Queries

Kun Gao, S. Harizopoulos, I. Pandis, Vladislav Shkapenyuk, A. Ailamaki
{"title":"Simultaneous Pipelining in QPipe: Exploiting Work Sharing Opportunities Across Queries","authors":"Kun Gao, S. Harizopoulos, I. Pandis, Vladislav Shkapenyuk, A. Ailamaki","doi":"10.1109/ICDE.2006.138","DOIUrl":null,"url":null,"abstract":"Data warehousing and scientific database applications operate on massive datasets and are characterized by complex queries accessing large portions of the database. Concurrent queries often exhibit high data and computation overlap, e.g., they access the same relations on disk, compute similar aggregates, or share intermediate results. Unfortunately, run-time sharing in modern database engines is limited by the paradigm of invoking an independent set of operator instances per query, potentially missing sharing opportunities if the buffer pool evicts data early.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"1 1","pages":"162-162"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Data warehousing and scientific database applications operate on massive datasets and are characterized by complex queries accessing large portions of the database. Concurrent queries often exhibit high data and computation overlap, e.g., they access the same relations on disk, compute similar aggregates, or share intermediate results. Unfortunately, run-time sharing in modern database engines is limited by the paradigm of invoking an independent set of operator instances per query, potentially missing sharing opportunities if the buffer pool evicts data early.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QPipe中的同步流水线:利用跨查询的工作共享机会
数据仓库和科学数据库应用程序对大量数据集进行操作,其特点是需要访问大量数据库的复杂查询。并发查询通常表现出高度的数据和计算重叠,例如,它们访问磁盘上相同的关系,计算相似的聚合,或共享中间结果。不幸的是,现代数据库引擎中的运行时共享受到每个查询调用一组独立操作符实例的范式的限制,如果缓冲池提前驱逐数据,可能会失去共享机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Adaptive Memory Management in Data Stream Systems Revision Processing in a Stream Processing Engine: A High-Level Design SUBSKY: Efficient Computation of Skylines in Subspaces How to Determine a Good Multi-Programming Level for External Scheduling Warehousing and Analyzing Massive RFID Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1