Egocentric Human-Object Interaction Detection Exploiting Synthetic Data

Rosario Leonardi, F. Ragusa, Antonino Furnari, G. Farinella
{"title":"Egocentric Human-Object Interaction Detection Exploiting Synthetic Data","authors":"Rosario Leonardi, F. Ragusa, Antonino Furnari, G. Farinella","doi":"10.48550/arXiv.2204.07061","DOIUrl":null,"url":null,"abstract":"We consider the problem of detecting Egocentric HumanObject Interactions (EHOIs) in industrial contexts. Since collecting and labeling large amounts of real images is challenging, we propose a pipeline and a tool to generate photo-realistic synthetic First Person Vision (FPV) images automatically labeled for EHOI detection in a specific industrial scenario. To tackle the problem of EHOI detection, we propose a method that detects the hands, the objects in the scene, and determines which objects are currently involved in an interaction. We compare the performance of our method with a set of state-of-the-art baselines. Results show that using a synthetic dataset improves the performance of an EHOI detection system, especially when few real data are available. To encourage research on this topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EHOI_SYNTH/.","PeriodicalId":74527,"journal":{"name":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","volume":"83 1","pages":"237-248"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Image Analysis and Processing. International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.07061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We consider the problem of detecting Egocentric HumanObject Interactions (EHOIs) in industrial contexts. Since collecting and labeling large amounts of real images is challenging, we propose a pipeline and a tool to generate photo-realistic synthetic First Person Vision (FPV) images automatically labeled for EHOI detection in a specific industrial scenario. To tackle the problem of EHOI detection, we propose a method that detects the hands, the objects in the scene, and determines which objects are currently involved in an interaction. We compare the performance of our method with a set of state-of-the-art baselines. Results show that using a synthetic dataset improves the performance of an EHOI detection system, especially when few real data are available. To encourage research on this topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EHOI_SYNTH/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于合成数据的自我中心人-物交互检测
我们考虑了在工业环境中检测以自我为中心的人物交互(EHOIs)的问题。由于收集和标记大量真实图像具有挑战性,我们提出了一个管道和工具来生成逼真的合成第一人称视觉(FPV)图像,自动标记用于特定工业场景中的EHOI检测。为了解决EHOI检测问题,我们提出了一种方法,该方法可以检测手,场景中的物体,并确定当前参与交互的物体。我们将我们的方法的性能与一组最先进的基线进行比较。结果表明,使用合成数据集可以提高EHOI检测系统的性能,特别是在真实数据较少的情况下。为了鼓励对这一主题的研究,我们在以下url上公开发布了建议的数据集:https://iplab.dmi.unict.it/EHOI_SYNTH/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic Visual Network (FLVN): A neuro-symbolic approach for visual features matching Sparse Double Descent in Vision Transformers: real or phantom threat? Not with my name! Inferring artists' names of input strings employed by Diffusion Models CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle Components Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1