{"title":"Comparison of Adaptive Fuzzy EKF and Adaptive Fuzzy UKF for State Estimation of UAVs Using Sensor Fusion","authors":"Huda Naji Al-sudany, B. Lantos","doi":"10.3311/ppee.20361","DOIUrl":null,"url":null,"abstract":"Development of an Adaptive Fuzzy Extended Kalman Filter (AFEKF) and an Adaptive Fuzzy Unscented Kalman Filter (AFUKF) for the state estimation of unmanned aerial vehicles (UAVs) were presented in this paper based on real flight data of a fixed wing airplane. The Adaptive Neuro Fuzzy extension helps to estimate the values of the EKF's and UKF's Rk covariance matrix at each sampling instant when measurement update step is carried out. The ANFIS monitors the EKF's and UKF's performances attempt to eliminate the gap between theoretical and real innovation sequences' covariance. The investigations show that AFUKF can provide better performance in accuracy and less error than the AFEKF in case of real flight data for maneuvering fixed wing UAVs.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"9 1","pages":"215-226"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.20361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Development of an Adaptive Fuzzy Extended Kalman Filter (AFEKF) and an Adaptive Fuzzy Unscented Kalman Filter (AFUKF) for the state estimation of unmanned aerial vehicles (UAVs) were presented in this paper based on real flight data of a fixed wing airplane. The Adaptive Neuro Fuzzy extension helps to estimate the values of the EKF's and UKF's Rk covariance matrix at each sampling instant when measurement update step is carried out. The ANFIS monitors the EKF's and UKF's performances attempt to eliminate the gap between theoretical and real innovation sequences' covariance. The investigations show that AFUKF can provide better performance in accuracy and less error than the AFEKF in case of real flight data for maneuvering fixed wing UAVs.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).