Mohammed Tag Elsir Awad Elsoufi, Xiong Ying, Wang Jun, Tang Bin
{"title":"Fletcher-Reeves learning approach for high order MQAM signal modulation recognition","authors":"Mohammed Tag Elsir Awad Elsoufi, Xiong Ying, Wang Jun, Tang Bin","doi":"10.1109/IACS.2016.7476089","DOIUrl":null,"url":null,"abstract":"A new method of Modulation Recognition of communication signals is proposed based on Clustering Validity Indices. These indices provide a good basis for key feature extraction. To distinguish different modulation schemes, a Fuzzy C-mean (FCM) clustering is used to get the membership matrix of different clusters. Then, a clustering validity measure is applied to extract features. To enhance clustering results at low SNR, a neural network with a conjugate gradient learning algorithm is utilized. Fletcher-Reeves learning approach enhances the recognition rate and widely improves the speed and rate of convergence. Simulation results show the validity of proposed approach compared with other approaches using only clustering or using back propagation neural networks. Misclassification rate is less for low order MQAM signals. This algorithm is applicable in high order MQAM signals. In Non-cooperative Communications, the modulated signal parameters are unknown. Some Modulation Recognition algorithms rely on estimating these parameters first, then applying recognition algorithms. Proposed algorithm doesn't need any prior information to achieve modulation recognition.","PeriodicalId":6579,"journal":{"name":"2016 7th International Conference on Information and Communication Systems (ICICS)","volume":"19 1","pages":"74-79"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2016.7476089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A new method of Modulation Recognition of communication signals is proposed based on Clustering Validity Indices. These indices provide a good basis for key feature extraction. To distinguish different modulation schemes, a Fuzzy C-mean (FCM) clustering is used to get the membership matrix of different clusters. Then, a clustering validity measure is applied to extract features. To enhance clustering results at low SNR, a neural network with a conjugate gradient learning algorithm is utilized. Fletcher-Reeves learning approach enhances the recognition rate and widely improves the speed and rate of convergence. Simulation results show the validity of proposed approach compared with other approaches using only clustering or using back propagation neural networks. Misclassification rate is less for low order MQAM signals. This algorithm is applicable in high order MQAM signals. In Non-cooperative Communications, the modulated signal parameters are unknown. Some Modulation Recognition algorithms rely on estimating these parameters first, then applying recognition algorithms. Proposed algorithm doesn't need any prior information to achieve modulation recognition.