{"title":"Parameter selection for optimized non-local means filtering of task fMRI","authors":"Jian Li, R. Leahy","doi":"10.1109/ISBI.2017.7950564","DOIUrl":null,"url":null,"abstract":"Non-local means (NLM) filtering of fMRI can reduce noise while preserving spatial structure. We have developed a variant called temporal-NLM (tNLM) which uses similarity in time-series between voxels as the basis for computing the weights in the filter. Using tNLM, dynamic fMRI data can be denoised while spatial boundaries between functionally distinct areas in the brain tend to be preserved. The degree of smoothing in tNLM is determined by a parameter h. Here we describe a procedure for selection of h to optimize our ability to differentiate functionally discrete brain regions. We demonstrate the method in application to optimized filtering of task fMRI data.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"1 1","pages":"476-480"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Non-local means (NLM) filtering of fMRI can reduce noise while preserving spatial structure. We have developed a variant called temporal-NLM (tNLM) which uses similarity in time-series between voxels as the basis for computing the weights in the filter. Using tNLM, dynamic fMRI data can be denoised while spatial boundaries between functionally distinct areas in the brain tend to be preserved. The degree of smoothing in tNLM is determined by a parameter h. Here we describe a procedure for selection of h to optimize our ability to differentiate functionally discrete brain regions. We demonstrate the method in application to optimized filtering of task fMRI data.