{"title":"Twig query processing over graph-structured XML data","authors":"Zografoula Vagena, Mirella M. Moro, V. Tsotras","doi":"10.1145/1017074.1017087","DOIUrl":null,"url":null,"abstract":"XML and semi-structured data is usually modeled using graph structures. Structural summaries, which have been proposed to speedup XML query processing have graph forms as well. The existent approaches for evaluating queries over tree structured data (i.e. data whose underlying structure is a tree) are not directly applicable when the data is modeled as a random graph. Moreover, they cannot be applied when structural summaries are employed and, to the best of our knowledge, no analogous techniques have been reported for this case either. As a result, the potential of structural summaries is not fully exploited.In this paper, we investigate query evaluation techniques applicable to graph-structured data. We propose efficient algorithms for the case of directed acyclic graphs, which appear in many real world situations. We then tailor our approaches to handle other directed graphs as well. Our experimental evaluation reveals the advantages of our solutions over existing methods for graph-structured data.","PeriodicalId":93360,"journal":{"name":"Proceedings of the 5th International Workshop on Exploratory Search in Databases and the Web. International Workshop on Exploratory Search in Databases and the Web (5th : 2018 : Houston, Tex.)","volume":"25 1","pages":"43-48"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Exploratory Search in Databases and the Web. International Workshop on Exploratory Search in Databases and the Web (5th : 2018 : Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1017074.1017087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

XML and semi-structured data is usually modeled using graph structures. Structural summaries, which have been proposed to speedup XML query processing have graph forms as well. The existent approaches for evaluating queries over tree structured data (i.e. data whose underlying structure is a tree) are not directly applicable when the data is modeled as a random graph. Moreover, they cannot be applied when structural summaries are employed and, to the best of our knowledge, no analogous techniques have been reported for this case either. As a result, the potential of structural summaries is not fully exploited.In this paper, we investigate query evaluation techniques applicable to graph-structured data. We propose efficient algorithms for the case of directed acyclic graphs, which appear in many real world situations. We then tailor our approaches to handle other directed graphs as well. Our experimental evaluation reveals the advantages of our solutions over existing methods for graph-structured data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图结构XML数据上的小枝查询处理
XML和半结构化数据通常使用图结构建模。为了加速XML查询处理而提出的结构摘要也具有图形形式。现有的评估树结构数据(即底层结构为树的数据)查询的方法不能直接适用于将数据建模为随机图的情况。此外,当采用结构摘要时,它们不能应用,据我们所知,这种情况下也没有类似的技术报道。因此,结构摘要的潜力没有得到充分利用。本文研究了适用于图结构数据的查询评估技术。我们针对有向无环图的情况提出了有效的算法,这种情况出现在许多现实世界的情况中。然后我们调整我们的方法来处理其他有向图。我们的实验评估揭示了我们的解决方案比现有的图结构数据方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Pros and Cons of Ranked Entities with COMPETE Strategies for Detection of Correlated Data Streams Exploring Genomic Datasets: from Batch to Interactive and Back Discovery and Creation of Rich Entities for Knowledge Bases Recommendations for Explorations based on Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1