Optimization on Lie Manifolds and Projective Tracking

Lin Guangwei, L. Yunpeng, Shi Zelin, Yin Jian
{"title":"Optimization on Lie Manifolds and Projective Tracking","authors":"Lin Guangwei, L. Yunpeng, Shi Zelin, Yin Jian","doi":"10.1109/CSSE.2008.1241","DOIUrl":null,"url":null,"abstract":"Template tracking based on the space transformation model can often be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. We show that exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The new method relies on the differential geometry of Lie manifolds and the underlying connections between Lie groups and their associated Lie algebras. The comparative projective tracking experiments validate the effectiveness of the template tracking based on the Lie manifolds optimization.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"21 1","pages":"768-771"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSSE.2008.1241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Template tracking based on the space transformation model can often be reduced to solve a nonlinear least squares optimization problem over a Lie manifold of parameters. The algorithm on the vector space has more limitations when it concerns the nonlinear projective warps. We show that exploiting the special structure of Lie manifolds allows one to devise a method for optimizing on Lie manifolds in a computationally efficient manner. The new method relies on the differential geometry of Lie manifolds and the underlying connections between Lie groups and their associated Lie algebras. The comparative projective tracking experiments validate the effectiveness of the template tracking based on the Lie manifolds optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
李流形的优化与投影跟踪
基于空间变换模型的模板跟踪通常可以简化为求解参数李流形上的非线性最小二乘优化问题。向量空间上的算法在处理非线性投影翘曲时存在较大的局限性。我们表明,利用李流形的特殊结构,可以设计出一种计算效率高的方法来优化李流形。新方法依赖于李流形的微分几何和李群及其相关李代数之间的潜在联系。对比投影跟踪实验验证了基于李流形优化的模板跟踪的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1