Variational approach to the construction of discrete mathematical model of the pendulum motion with vibrating suspension with friction

V. Savchin, P. Trinh
{"title":"Variational approach to the construction of discrete mathematical model of the pendulum motion with vibrating suspension with friction","authors":"V. Savchin, P. Trinh","doi":"10.18500/0869-6632-2022-30-4-411-423","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is, first, a construction of the indirect Hamilton’s variational principle for the problem of motion of a pendulum with a vibration suspension with friction, oscillating along a straight line making a small angle with the vertical line. Second, the construction on its basis of the difference scheme. Third, to carry out its investigation by methods of numerical analysis. Methods. The problem of motion of the indicated pendulum is considering as a particular case of the given boundary problem for a nonlinear second order differential equations. For the solution of problem of its variational formulation there is used the criterion of potentiality of operators — the symmetry of the Gateaux derivative of nonlinear ˆ operator of the given problem. This criterion is also used for the construction of variational multiplier and the corresponding Hamilton’s variational principle. On its basis there is constructed and investigated a discrete analog of the given boundary problem and a problem of motion of the pendulum. Results. It is proved that the operator of the given boundary problem is not potential with respect to the classical bilinear form. There is found a variational multiplier and constructed the corresponding indirect Hamilton’s variational principle. On its basis there is obtained a discrete analog of the given boundary problem and its solution is found. As particular cases one can deduce from that the corresponding results for the problem of motion of the pendulum. There are performed numerical experiments, establishing the dependence of solutions of the problem of motion of the pendulum on the change of parameters. Conclusion. There is worked out a variational approach to the construction of two difference schemes for the problem of a pendulum with a suspension with friction, oscillating along a straight line making a small angle with the vertical line. There are presented results of numerical simulation under different parameters of the problem. Numerical results show that under sufficiently small amplitude and sufficiently big frequency of the oscillations of the point of suspension the pendulum realizes a periodical motion.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-4-411-423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this work is, first, a construction of the indirect Hamilton’s variational principle for the problem of motion of a pendulum with a vibration suspension with friction, oscillating along a straight line making a small angle with the vertical line. Second, the construction on its basis of the difference scheme. Third, to carry out its investigation by methods of numerical analysis. Methods. The problem of motion of the indicated pendulum is considering as a particular case of the given boundary problem for a nonlinear second order differential equations. For the solution of problem of its variational formulation there is used the criterion of potentiality of operators — the symmetry of the Gateaux derivative of nonlinear ˆ operator of the given problem. This criterion is also used for the construction of variational multiplier and the corresponding Hamilton’s variational principle. On its basis there is constructed and investigated a discrete analog of the given boundary problem and a problem of motion of the pendulum. Results. It is proved that the operator of the given boundary problem is not potential with respect to the classical bilinear form. There is found a variational multiplier and constructed the corresponding indirect Hamilton’s variational principle. On its basis there is obtained a discrete analog of the given boundary problem and its solution is found. As particular cases one can deduce from that the corresponding results for the problem of motion of the pendulum. There are performed numerical experiments, establishing the dependence of solutions of the problem of motion of the pendulum on the change of parameters. Conclusion. There is worked out a variational approach to the construction of two difference schemes for the problem of a pendulum with a suspension with friction, oscillating along a straight line making a small angle with the vertical line. There are presented results of numerical simulation under different parameters of the problem. Numerical results show that under sufficiently small amplitude and sufficiently big frequency of the oscillations of the point of suspension the pendulum realizes a periodical motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用变分方法建立带摩擦振动悬架摆运动的离散数学模型
本文的主要目的是:首先,对带摩擦振动悬架的摆摆沿直线振荡,与垂直线成小角的运动问题,构造了间接Hamilton变分原理。二是在其基础上的差异方案建设。第三,运用数值分析的方法对其进行研究。方法。所述摆的运动问题被认为是非线性二阶微分方程给定边界问题的一个特例。对于其变分形式问题的解,使用了算子的势性判据——给定问题的非线性算子的Gateaux导数的对称性。该准则也可用于变分乘数的构造和相应的汉密尔顿变分原理。在此基础上,构造并研究了给定边界问题和摆运动问题的离散模拟。结果。证明了给定边界问题的算子在经典双线性形式下是不势的。找到了一个变分乘数,构造了相应的间接哈密顿变分原理。在此基础上,得到了给定边界问题的离散模拟形式,并给出了其解。作为特殊的例子,人们可以由此推导出钟摆运动问题的相应结果。通过数值实验,建立了摆运动问题的解与参数变化的依赖关系。结论。对沿直线与垂直线作小角摆动的有摩擦悬架摆问题,提出了一种构造两种差分格式的变分方法。给出了问题在不同参数下的数值模拟结果。数值计算结果表明,在悬点振荡幅度足够小、频率足够大的情况下,摆锤实现周期运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1