{"title":"Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive distance metric","authors":"C. Lian, S. Ruan, T. Denoeux, Hua Li, P. Vera","doi":"10.1109/ISBI.2017.7950726","DOIUrl":null,"url":null,"abstract":"While accurate tumor delineation in FDG-PET is a vital task, noisy and blurring imaging system makes it a challenging work. In this paper, we propose to address this issue using the theory of belief functions, a powerful tool for modeling and reasoning with uncertain and/or imprecise information. An automatic segmentation method based on clustering is developed in 3-D, where, different from available methods, PET voxels are described not only by intensities but also complementally by features extracted from patches. Considering there are a large amount of features without consensus regarding the most informative ones, and some of them are even unreliable due to image quality, a specific procedure is adopted to adapt distance metric for properly representing clustering distortions and neighborhood similarities. A specific spatial regularization is also included in the clustering algorithm to effectively quantify local homogeneity. The proposed method has been evaluated by real-patient images, showing good performance.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"21 1","pages":"1177-1180"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
While accurate tumor delineation in FDG-PET is a vital task, noisy and blurring imaging system makes it a challenging work. In this paper, we propose to address this issue using the theory of belief functions, a powerful tool for modeling and reasoning with uncertain and/or imprecise information. An automatic segmentation method based on clustering is developed in 3-D, where, different from available methods, PET voxels are described not only by intensities but also complementally by features extracted from patches. Considering there are a large amount of features without consensus regarding the most informative ones, and some of them are even unreliable due to image quality, a specific procedure is adopted to adapt distance metric for properly representing clustering distortions and neighborhood similarities. A specific spatial regularization is also included in the clustering algorithm to effectively quantify local homogeneity. The proposed method has been evaluated by real-patient images, showing good performance.