Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: A review

Q. Husain
{"title":"Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: A review","authors":"Q. Husain","doi":"10.1515/boca-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract Numerous types of nanoparticles and nanocomposites have successfully been employed for the immobilization and stabilization of amylolytic enzymes; α-amylases, β-amylases, glucoamylases and pullulanases. Nano-support immobilized amylolytic enzymes retained very high activity and yield of immobilization. The immobilization of these enzymes, particularly α-amylases and pullulanases, to the nanosupports is helpful in minimizing the problem of steric hindrances during binding of substrate to the active site of the enzyme. The majority of nano-support immobilized amylolytic enzymes exhibited very high resistance to inactivation induced by different kinds of physical and chemical denaturants and these immobilized enzyme preparations maintained very high activity on their repeated and continuous uses. Amylolytic enzymes immobilized on nano-supports have successfully been applied in food, fuel, textile, paper and pulp, detergent, environmental, medical, and analytical fields.","PeriodicalId":8747,"journal":{"name":"Biocatalysis","volume":"29 1","pages":"37 - 53"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/boca-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Abstract Numerous types of nanoparticles and nanocomposites have successfully been employed for the immobilization and stabilization of amylolytic enzymes; α-amylases, β-amylases, glucoamylases and pullulanases. Nano-support immobilized amylolytic enzymes retained very high activity and yield of immobilization. The immobilization of these enzymes, particularly α-amylases and pullulanases, to the nanosupports is helpful in minimizing the problem of steric hindrances during binding of substrate to the active site of the enzyme. The majority of nano-support immobilized amylolytic enzymes exhibited very high resistance to inactivation induced by different kinds of physical and chemical denaturants and these immobilized enzyme preparations maintained very high activity on their repeated and continuous uses. Amylolytic enzymes immobilized on nano-supports have successfully been applied in food, fuel, textile, paper and pulp, detergent, environmental, medical, and analytical fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米材料作为淀粉酶固定化的新型载体及其应用综述
摘要:许多类型的纳米颗粒和纳米复合材料已经成功地应用于淀粉水解酶的固定化和稳定;α-淀粉酶,β-淀粉酶,葡萄糖淀粉酶和普鲁兰酶。纳米载体固定化淀粉酶保持了很高的固定化活性和固定化产量。将这些酶,特别是α-淀粉酶和葡聚糖酶固定在纳米载体上,有助于减少底物与酶活性位点结合时的空间位阻问题。大多数纳米载体固定化酶对各种物理和化学变性剂的失活具有很高的抗性,并且这些固定化酶制剂在重复和连续使用中保持着很高的活性。在纳米载体上固定化的淀粉酶已成功地应用于食品、燃料、纺织、造纸和纸浆、洗涤剂、环境、医疗和分析等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rieske Non-Heme Iron Dioxygenases: Applications and Future Perspectives Oxidoreductases: Overview and Practical Applications Microbial Enzymes in Food Processing β-Amylase: General Properties, Mechanism and Panorama of Applications by Immobilization on Nano-Structures Clinical Significance of Enzymes in Disease and Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1