High throughput filtering using FPGA-acceleration

W. Vanderbauwhede, Anton Frolov, L. Azzopardi, S. R. Chalamalasetti, M. Margala
{"title":"High throughput filtering using FPGA-acceleration","authors":"W. Vanderbauwhede, Anton Frolov, L. Azzopardi, S. R. Chalamalasetti, M. Margala","doi":"10.1145/2505515.2507866","DOIUrl":null,"url":null,"abstract":"With the rise in the amount information of being streamed across networks, there is a growing demand to vet the quality, type and content itself for various purposes such as spam, security and search. In this paper, we develop an energy-efficient high performance information filtering system that is capable of classifying a stream of incoming document at high speed. The prototype parses a stream of documents using a multicore CPU and then performs classification using Field-Programmable Gate Arrays (FPGAs). On a large TREC data collection, we implemented a Naive Bayes classifier on our prototype and compared it to an optimized CPU based-baseline. Our empirical findings show that we can classify documents at 10Gb/s which is up to 94 times faster than the CPU baseline (and up to 5 times faster than previous FPGA based implementations). In future work, we aim to increase the throughput by another order of magnitude by implementing both the parser and filter on the FPGA.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rise in the amount information of being streamed across networks, there is a growing demand to vet the quality, type and content itself for various purposes such as spam, security and search. In this paper, we develop an energy-efficient high performance information filtering system that is capable of classifying a stream of incoming document at high speed. The prototype parses a stream of documents using a multicore CPU and then performs classification using Field-Programmable Gate Arrays (FPGAs). On a large TREC data collection, we implemented a Naive Bayes classifier on our prototype and compared it to an optimized CPU based-baseline. Our empirical findings show that we can classify documents at 10Gb/s which is up to 94 times faster than the CPU baseline (and up to 5 times faster than previous FPGA based implementations). In future work, we aim to increase the throughput by another order of magnitude by implementing both the parser and filter on the FPGA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用fpga加速的高吞吐量滤波
随着通过网络传输的信息量的增加,为了垃圾邮件、安全、搜索等各种目的,对质量、类型和内容本身进行审查的需求也在不断增长。在本文中,我们开发了一种高效节能的信息过滤系统,该系统能够对输入的文档流进行高速分类。原型使用多核CPU解析文档流,然后使用现场可编程门阵列(fpga)执行分类。在一个大型TREC数据集上,我们在原型上实现了朴素贝叶斯分类器,并将其与优化的基于CPU的基线进行了比较。我们的实证研究结果表明,我们可以以10Gb/s的速度对文档进行分类,这比CPU基准快94倍(比以前基于FPGA的实现快5倍)。在未来的工作中,我们的目标是通过在FPGA上实现解析器和滤波器来将吞吐量提高一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1