Satellite Imagery Noising With Generative Adversarial Networks

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Cognitive Informatics and Natural Intelligence Pub Date : 2021-01-01 DOI:10.4018/ijcini.2021010102
Akram Zaytar, Chaker El Amrani
{"title":"Satellite Imagery Noising With Generative Adversarial Networks","authors":"Akram Zaytar, Chaker El Amrani","doi":"10.4018/ijcini.2021010102","DOIUrl":null,"url":null,"abstract":"Using satellite imagery and remote sensing data for supervised and self-supervised learning problems can be quite challenging when parts of the underlying datasets are missing due to natural phenomena (clouds, fog, haze, mist, etc.). Solving this problem will improve remote sensing data augmentation and make use of it in a world where satellite imagery represents a great resource to exploit in any big data pipeline setup. In this paper, the authors present a generative adversarial network (GANs) model that can generate natural atmospheric noise that serves as a data augmentation preprocessing tool to produce input to supervised machine learning algorithms.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"225 1","pages":"16-25"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.2021010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using satellite imagery and remote sensing data for supervised and self-supervised learning problems can be quite challenging when parts of the underlying datasets are missing due to natural phenomena (clouds, fog, haze, mist, etc.). Solving this problem will improve remote sensing data augmentation and make use of it in a world where satellite imagery represents a great resource to exploit in any big data pipeline setup. In this paper, the authors present a generative adversarial network (GANs) model that can generate natural atmospheric noise that serves as a data augmentation preprocessing tool to produce input to supervised machine learning algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成对抗网络的卫星图像降噪
当由于自然现象(云、雾、霾、薄雾等)而丢失部分底层数据集时,使用卫星图像和遥感数据进行监督和自监督学习问题可能相当具有挑战性。解决这一问题将改善遥感数据增强,并在卫星图像代表任何大数据管道设置中都可以利用的巨大资源的世界中利用它。在本文中,作者提出了一种生成对抗网络(GANs)模型,该模型可以产生自然大气噪声,作为数据增强预处理工具,为监督机器学习算法产生输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
11.10%
发文量
16
期刊介绍: The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.
期刊最新文献
Foreign Language Anxiety of College English Teachers and Their Countermeasures A Lévy Flight-Inspired Random Walk Algorithm for Continuous Fitness Landscape Analysis A Coevolution Algorithm Based on Spatial Division and Hybrid Matching Strategy An Intelligent Detection Approach for Smoking Behavior Efficacy of Deep Neural Embeddings-Based Semantic Similarity in Automatic Essay Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1