Electrochemical reduction of CO2 on a Cu2O/polyaniline /stainless steel based electrode

Qin Zhang, Yanping Liang
{"title":"Electrochemical reduction of CO2 on a Cu2O/polyaniline /stainless steel based electrode","authors":"Qin Zhang, Yanping Liang","doi":"10.1515/jaots-2016-0187","DOIUrl":null,"url":null,"abstract":"Abstract: Reduction of CO2 into useful fuels is regarded as a new way to deal with increasing CO2 emissions and its bad effects on climate. In this report, simple electrochemical oxidation-reduction method has been utilized to prepare Cu2O/polyaniline (PANI)/stainless steel composite electrode, which was identified as a contributor for CO2 reduction in an aqueous solution. X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry technique were carried out to characterize the as-obtained electrode. As-synthesized composite electrode exhibited excellent electrocatalytic activity. The production of formaldehyde that comes from the reduction of CO2 using Cu2O/PANI/stainless steel based electrode (Cu2O/PANI/stainless steel) in 0.1 mol/L sodium sulfate solution is 0.505 μmol·L–1·h–1 approximately.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract: Reduction of CO2 into useful fuels is regarded as a new way to deal with increasing CO2 emissions and its bad effects on climate. In this report, simple electrochemical oxidation-reduction method has been utilized to prepare Cu2O/polyaniline (PANI)/stainless steel composite electrode, which was identified as a contributor for CO2 reduction in an aqueous solution. X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry technique were carried out to characterize the as-obtained electrode. As-synthesized composite electrode exhibited excellent electrocatalytic activity. The production of formaldehyde that comes from the reduction of CO2 using Cu2O/PANI/stainless steel based electrode (Cu2O/PANI/stainless steel) in 0.1 mol/L sodium sulfate solution is 0.505 μmol·L–1·h–1 approximately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu2O/聚苯胺/不锈钢电极上CO2的电化学还原
摘要:将二氧化碳转化为有用的燃料被认为是应对二氧化碳排放增加及其对气候的不良影响的新途径。本文采用简单的电化学氧化还原法制备了Cu2O/聚苯胺(PANI)/不锈钢复合电极,该电极在水溶液中具有CO2还原作用。采用x射线衍射(XRD)、透射电镜(TEM)和循环伏安法对所得电极进行了表征。合成的复合电极表现出优异的电催化活性。Cu2O/PANI/不锈钢基电极(Cu2O/PANI/不锈钢)在0.1 mol/L硫酸钠溶液中还原CO2产生的甲醛产量约为0.505 μmol·L - 1·h-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
期刊最新文献
Catalytic Ozonation of Ciprofloxacin over Cerium Oxide Modified SBA-15 and Toxicity Assessment towards E. coli Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in Aqueous Solution by Combination of Hydrogen Peroxide, Nanocrystallite Zinc Oxide and Ultrasound Irradiation Degradation of Cyanide using Stabilized S, N-TiO2 Nanoparticles by Visible and Sun Light Environmental Matrix Effects on Degradation Kinetics of Ibuprofen in a UV/ Persulfate System An Overview of Ozone Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1