Zinc Oxide Nanoparticles Promoted Highly Efficient and Benign Synthesis of 3,4-Dihydropyrimidine-2(1H)-one/thione Derivatives

V. Bagul
{"title":"Zinc Oxide Nanoparticles Promoted Highly Efficient and Benign Synthesis of \n3,4-Dihydropyrimidine-2(1H)-one/thione Derivatives","authors":"V. Bagul","doi":"10.13005/msri/180210","DOIUrl":null,"url":null,"abstract":"Using the synthetic potential of recyclable zinc oxide(ZnO) nanoparticles (NPs), a proficient, elegant, and rapid one-pot synthesis of a variety of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives from the1,3-dicarbonyl compound, urea/thiourea, and various aromatic aldehydes havebeen unveiled in the present research. TheZnONPs were synthesized by theco-precipitation method. The powder X-ray diffraction method was employed for the determination of thecrystallite size of the synthesized ZnONPs.The hexagonal phase was obtained in the XRD pattern of the synthesized ZnO NPs with anaverage crystallite size of 25 nm.The current synthetic strategy offers excellent yields, a short reaction time, favorable reaction conditions, easy transformation, non-chromatographic product purification, and catalyst recyclability. Furthermore, the catalyst could be retrieved and reused without losing any of its catalytic activity. As a result, this elegant protocol is an adequate method fordihydropyrimidinone/thione synthesis.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/180210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the synthetic potential of recyclable zinc oxide(ZnO) nanoparticles (NPs), a proficient, elegant, and rapid one-pot synthesis of a variety of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives from the1,3-dicarbonyl compound, urea/thiourea, and various aromatic aldehydes havebeen unveiled in the present research. TheZnONPs were synthesized by theco-precipitation method. The powder X-ray diffraction method was employed for the determination of thecrystallite size of the synthesized ZnONPs.The hexagonal phase was obtained in the XRD pattern of the synthesized ZnO NPs with anaverage crystallite size of 25 nm.The current synthetic strategy offers excellent yields, a short reaction time, favorable reaction conditions, easy transformation, non-chromatographic product purification, and catalyst recyclability. Furthermore, the catalyst could be retrieved and reused without losing any of its catalytic activity. As a result, this elegant protocol is an adequate method fordihydropyrimidinone/thione synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌纳米颗粒促进了3,4-二氢嘧啶-2(1H)- 1 /硫酮衍生物的高效良性合成
利用可回收氧化锌纳米颗粒(NPs)的合成潜力,本研究成功地、优雅地、快速地从1,3-二羰基化合物、尿素/硫脲和各种芳香醛类化合物中合成了多种3,4-二氢嘧啶-2(1H)- 1 /硫酮衍生物。采用共沉淀法合成了znonps。采用粉末x射线衍射法测定合成的ZnONPs的晶体尺寸。合成的ZnO纳米粒子的XRD谱图显示为六方相,平均晶粒尺寸为25 nm。目前的合成策略具有收率高、反应时间短、反应条件有利、转化容易、产物非色谱纯化、催化剂可回收等优点。此外,催化剂可以在不失去任何催化活性的情况下回收和重复使用。因此,这一优雅的方案是二氢嘧啶/硫酮合成的适当方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Variable Material Approach to Combat Climate Change Enhancing Sustainable Concrete Investigating the Feasibility of POND ASH as a Partial Replacement for Fine Aggregate in GGBS-Based Optimizing Concrete Strength with the Partial Replacement of Aggregate with Ceramic Tiles for Sustainable Construction Low Temperature Sintering of Porous Zeolite Spheres via Waste Glass Powder Addition Ultrasonic-Assisted Synthesis of Silicon/Exfoliated-Graphite Nanocomposite as Anode Material for Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1