Building Firmly Nonexpansive Convolutional Neural Networks

M. Terris, A. Repetti, J. Pesquet, Y. Wiaux
{"title":"Building Firmly Nonexpansive Convolutional Neural Networks","authors":"M. Terris, A. Repetti, J. Pesquet, Y. Wiaux","doi":"10.1109/ICASSP40776.2020.9054731","DOIUrl":null,"url":null,"abstract":"Building nonexpansive Convolutional Neural Networks (CNNs) is a challenging problem that has recently gained a lot of attention from the image processing community. In particular, it appears to be the key to obtain convergent Plugand-Play algorithms. This problem, which relies on an accurate control of the the Lipschitz constant of the convolutional layers, has also been investigated for Generative Adversarial Networks to improve robustness to adversarial perturbations. However, to the best of our knowledge, no efficient method has been developed yet to build nonexpansive CNNs. In this paper, we develop an optimization algorithm that can be incorporated in the training of a network to ensure the nonexpansiveness of its convolutional layers. This is shown to allow us to build firmly nonexpansive CNNs. We apply the proposed approach to train a CNN for an image denoising task and show its effectiveness through simulations.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"74 1","pages":"8658-8662"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Building nonexpansive Convolutional Neural Networks (CNNs) is a challenging problem that has recently gained a lot of attention from the image processing community. In particular, it appears to be the key to obtain convergent Plugand-Play algorithms. This problem, which relies on an accurate control of the the Lipschitz constant of the convolutional layers, has also been investigated for Generative Adversarial Networks to improve robustness to adversarial perturbations. However, to the best of our knowledge, no efficient method has been developed yet to build nonexpansive CNNs. In this paper, we develop an optimization algorithm that can be incorporated in the training of a network to ensure the nonexpansiveness of its convolutional layers. This is shown to allow us to build firmly nonexpansive CNNs. We apply the proposed approach to train a CNN for an image denoising task and show its effectiveness through simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建牢固的非膨胀卷积神经网络
构建非膨胀卷积神经网络(cnn)是一个具有挑战性的问题,近年来得到了图像处理界的广泛关注。特别是,它似乎是获得即插即用算法的关键。这个问题依赖于对卷积层的Lipschitz常数的精确控制,也被研究用于生成对抗网络,以提高对对抗扰动的鲁棒性。然而,据我们所知,目前还没有开发出有效的方法来构建非膨胀cnn。在本文中,我们开发了一种优化算法,该算法可以纳入网络的训练中,以确保其卷积层的非扩展性。这被证明可以让我们建立坚固的非膨胀cnn。我们将该方法应用于训练CNN进行图像去噪任务,并通过仿真验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Analysis of Multi-Carrier Agile Phased Array Radar Paco and Paco-Dct: Patch Consensus and Its Application To Inpainting Array-Geometry-Aware Spatial Active Noise Control Based on Direction-of-Arrival Weighting Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels Distributed Non-Orthogonal Pilot Design for Multi-Cell Massive Mimo Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1