{"title":"Optimal Strategy for Supplier Selection in a Global Supply Chain Using Machine Learning Technique","authors":"Itoua Wanck Eyika Gaida, M. Mittal, A. S. Yadav","doi":"10.4018/ijdsst.292449","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimization strategy for the best selection process of suppliers. Based on recent literature reviews, the paper assumes a selection of commonly used variables for selecting suppliers, and using Logistic regression algorithm technique, to build a model of optimization that learns from customer’s requirements and supplier’s data, and then make predictions and recommendations for best suppliers. The supplier selection process can quickly at times, turn into a complex task for decision-makers, to dealing with the growing number of supplier base list. But Logistics regression technique makes the process easier in the ability to efficiently fetch customer’s requirements with the entire supplier base list and determine by predicting a list of potential suppliers meeting the actual requirements. The selected suppliers make up the recommendation list for the best suppliers for the requirements. And finally, graphical representations are given to showcase the framework analysis, variable selection, and other illustrations about the model analysis","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.292449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes an optimization strategy for the best selection process of suppliers. Based on recent literature reviews, the paper assumes a selection of commonly used variables for selecting suppliers, and using Logistic regression algorithm technique, to build a model of optimization that learns from customer’s requirements and supplier’s data, and then make predictions and recommendations for best suppliers. The supplier selection process can quickly at times, turn into a complex task for decision-makers, to dealing with the growing number of supplier base list. But Logistics regression technique makes the process easier in the ability to efficiently fetch customer’s requirements with the entire supplier base list and determine by predicting a list of potential suppliers meeting the actual requirements. The selected suppliers make up the recommendation list for the best suppliers for the requirements. And finally, graphical representations are given to showcase the framework analysis, variable selection, and other illustrations about the model analysis