{"title":"Chaotic dynamics model based on field-programmable analog array technology","authors":"T. Salih","doi":"10.11591/ijaas.v11.i2.pp168-176","DOIUrl":null,"url":null,"abstract":"Engineering applications in secure communications and encryption based on chaotic signals have attracted a lot of attention in the past decade. This paper presents an extensive study of the chaotic dynamics model of the Van Der Pol oscillator via MATLAB/Simulink simulation and its practical implementation using field-programmable analog matrix techniques. The obtained results show the ease of changing the frequency of the oscillator signal once it is retrieved, creating the required changes, and loading it again according to the required changes. An unlimited number of signals can be generated, allowing them to be used as a chaotic signal oscillator used in many transceiver systems, which require the generation of an unlimited number of such a signal. These research results confirmed that the AN231E04 field-programmable analog array (FPAA) device could be an interesting choice for analog circuit designers, it has the advantage of the ease of use in introducing design changes and testing many critical design solutions.","PeriodicalId":44367,"journal":{"name":"International Journal of Advances in Engineering Sciences and Applied Mathematics","volume":"59 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Engineering Sciences and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v11.i2.pp168-176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering applications in secure communications and encryption based on chaotic signals have attracted a lot of attention in the past decade. This paper presents an extensive study of the chaotic dynamics model of the Van Der Pol oscillator via MATLAB/Simulink simulation and its practical implementation using field-programmable analog matrix techniques. The obtained results show the ease of changing the frequency of the oscillator signal once it is retrieved, creating the required changes, and loading it again according to the required changes. An unlimited number of signals can be generated, allowing them to be used as a chaotic signal oscillator used in many transceiver systems, which require the generation of an unlimited number of such a signal. These research results confirmed that the AN231E04 field-programmable analog array (FPAA) device could be an interesting choice for analog circuit designers, it has the advantage of the ease of use in introducing design changes and testing many critical design solutions.
期刊介绍:
International Journal of Advances in Engineering Sciences and Applied Mathematics will be a thematic journal, where each issue will be dedicated to a specific area of engineering and applied mathematics. The journal will accept original articles and will also publish review article that summarize the state of the art and provide a perspective on areas of current research interest.Articles that contain purely theoretical results are discouraged.