{"title":"A stochastic particle system approximating the BGK equation","authors":"P. Buttà, M. Pulvirenti","doi":"10.3934/krm.2022029","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider a stochastic <inline-formula><tex-math id=\"M1\">\\begin{document}$ N $\\end{document}</tex-math></inline-formula>-particle system on a torus in which each particle moving freely can instantaneously thermalize according to the particle configuration at that instant. Following [<xref ref-type=\"bibr\" rid=\"b2\">2</xref>], we show that the propagation of chaos does hold and that the one-particle distribution converges to the solution of the BGK equation. The improvement with respect to [<xref ref-type=\"bibr\" rid=\"b2\">2</xref>] consists in the fact that here, as suggested by physical considerations, the thermalizing transition is driven only by the restriction of the particle configuration in a small neighborhood of the jumping particle. In other words, the Maxwellian distribution of the outgoing particle is computed via the empirical hydrodynamical fields associated to the fraction of particles sufficiently close to the test particle and not, as in [<xref ref-type=\"bibr\" rid=\"b2\">2</xref>], via the whole particle configuration.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a stochastic \begin{document}$ N $\end{document}-particle system on a torus in which each particle moving freely can instantaneously thermalize according to the particle configuration at that instant. Following [2], we show that the propagation of chaos does hold and that the one-particle distribution converges to the solution of the BGK equation. The improvement with respect to [2] consists in the fact that here, as suggested by physical considerations, the thermalizing transition is driven only by the restriction of the particle configuration in a small neighborhood of the jumping particle. In other words, the Maxwellian distribution of the outgoing particle is computed via the empirical hydrodynamical fields associated to the fraction of particles sufficiently close to the test particle and not, as in [2], via the whole particle configuration.
We consider a stochastic \begin{document}$ N $\end{document}-particle system on a torus in which each particle moving freely can instantaneously thermalize according to the particle configuration at that instant. Following [2], we show that the propagation of chaos does hold and that the one-particle distribution converges to the solution of the BGK equation. The improvement with respect to [2] consists in the fact that here, as suggested by physical considerations, the thermalizing transition is driven only by the restriction of the particle configuration in a small neighborhood of the jumping particle. In other words, the Maxwellian distribution of the outgoing particle is computed via the empirical hydrodynamical fields associated to the fraction of particles sufficiently close to the test particle and not, as in [2], via the whole particle configuration.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.