High accuracy discrimination of Parkinson's disease participants from healthy controls using smartphones

S. Arora, V. Venkataraman, S. Donohue, K. Biglan, E. Dorsey, Max A. Little
{"title":"High accuracy discrimination of Parkinson's disease participants from healthy controls using smartphones","authors":"S. Arora, V. Venkataraman, S. Donohue, K. Biglan, E. Dorsey, Max A. Little","doi":"10.1109/ICASSP.2014.6854280","DOIUrl":null,"url":null,"abstract":"The aim of this study is to accurately distinguish Parkinson's disease (PD) participants from healthy controls using self-administered tests of gait and postural sway. Using consumer-grade smartphones with in-built accelerometers, we objectively measure and quantify key movement severity symptoms of Parkinson's disease. Specifically, we record tri-axial accelerations, and extract a range of different features based on the time and frequency-domain properties of the acceleration time series. The features quantify key characteristics of the acceleration time series, and enhance the underlying differences in the gait and postural sway accelerations between PD participants and controls. Using a random forest classifier, we demonstrate an average sensitivity of 98.5% and average specificity of 97.5% in discriminating PD participants from controls.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"63 1","pages":"3641-3644"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

The aim of this study is to accurately distinguish Parkinson's disease (PD) participants from healthy controls using self-administered tests of gait and postural sway. Using consumer-grade smartphones with in-built accelerometers, we objectively measure and quantify key movement severity symptoms of Parkinson's disease. Specifically, we record tri-axial accelerations, and extract a range of different features based on the time and frequency-domain properties of the acceleration time series. The features quantify key characteristics of the acceleration time series, and enhance the underlying differences in the gait and postural sway accelerations between PD participants and controls. Using a random forest classifier, we demonstrate an average sensitivity of 98.5% and average specificity of 97.5% in discriminating PD participants from controls.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用智能手机对帕金森病患者与健康对照组进行高精度区分
本研究的目的是通过自我管理的步态和姿势摇摆测试,准确区分帕金森病(PD)参与者和健康对照。使用内置加速度计的消费级智能手机,我们客观地测量和量化帕金森病的关键运动严重程度症状。具体来说,我们记录三轴加速度,并根据加速度时间序列的时间域和频域特性提取一系列不同的特征。这些特征量化了加速时间序列的关键特征,并增强了PD参与者和对照组之间步态和姿势摇摆加速度的潜在差异。使用随机森林分类器,我们证明了区分PD参与者和对照组的平均灵敏度为98.5%,平均特异性为97.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1