Caixiang Fan, Sara Ghaemi, Hamzeh Khazaei, Yuxiang Chen, P. Musílek
{"title":"Performance Analysis of the IOTA DAG-Based Distributed Ledger","authors":"Caixiang Fan, Sara Ghaemi, Hamzeh Khazaei, Yuxiang Chen, P. Musílek","doi":"10.7939/R3-W1C1-WT05","DOIUrl":null,"url":null,"abstract":"Distributed ledgers (DLs) provide many advantages over centralized solutions in Internet of Things projects, including but not limited to improved security, transparency, and fault tolerance. To leverage DLs at scale, their well-known limitation (i.e., performance) should be adequately analyzed and addressed. Directed acyclic graph-based DLs have been proposed to tackle the performance and scalability issues by design. The first among them, IOTA, has shown promising signs in addressing the preceding issues. IOTA is an open source DL designed for the Internet of Things. It uses a directed acyclic graph to store transactions on its ledger, to achieve a potentially higher scalability over blockchain-based DLs. However, due to the uncertainty and centralization of the deployed consensus, the current IOTA implementation exposes some performance issues, making it less performant than the initial design. In this article, we first extend an existing simulator to support realistic IOTA simulations and investigate the impact of different design parameters on IOTA’s performance. Then, we propose a layered model to help the users of IOTA determine the optimal waiting time to resend the previously submitted but not yet confirmed transaction. Our findings reveal the impact of the transaction arrival rate, tip selection algorithms, weighted tip selection algorithm randomness, and network delay on the throughput. Using the proposed layered model, we shed some light on the distribution of the confirmed transactions. The distribution is leveraged to calculate the optimal time for resending an unconfirmed transaction to the DL. The performance analysis results can be used by both system designers and users to support their decision making.","PeriodicalId":56350,"journal":{"name":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","volume":"6 1","pages":"10:1-10:20"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Performance Evaluation of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7939/R3-W1C1-WT05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
Distributed ledgers (DLs) provide many advantages over centralized solutions in Internet of Things projects, including but not limited to improved security, transparency, and fault tolerance. To leverage DLs at scale, their well-known limitation (i.e., performance) should be adequately analyzed and addressed. Directed acyclic graph-based DLs have been proposed to tackle the performance and scalability issues by design. The first among them, IOTA, has shown promising signs in addressing the preceding issues. IOTA is an open source DL designed for the Internet of Things. It uses a directed acyclic graph to store transactions on its ledger, to achieve a potentially higher scalability over blockchain-based DLs. However, due to the uncertainty and centralization of the deployed consensus, the current IOTA implementation exposes some performance issues, making it less performant than the initial design. In this article, we first extend an existing simulator to support realistic IOTA simulations and investigate the impact of different design parameters on IOTA’s performance. Then, we propose a layered model to help the users of IOTA determine the optimal waiting time to resend the previously submitted but not yet confirmed transaction. Our findings reveal the impact of the transaction arrival rate, tip selection algorithms, weighted tip selection algorithm randomness, and network delay on the throughput. Using the proposed layered model, we shed some light on the distribution of the confirmed transactions. The distribution is leveraged to calculate the optimal time for resending an unconfirmed transaction to the DL. The performance analysis results can be used by both system designers and users to support their decision making.