Editorial Founding Issue

S. Aelst, P. Groenen
{"title":"Editorial Founding Issue","authors":"S. Aelst, P. Groenen","doi":"10.52933/jdssv.v1i1.52","DOIUrl":null,"url":null,"abstract":"The Journal of Data Science, Statistics, and Visualisation (JDSSV) is an electronic journal which welcomes contributions to data science, statistics, and visualisation, and in particular, those aspects which link and integrate these subject areas. Articles can cover topics such as machine learning and statistical learning, the visualisation and verbalisation of data, visual analytics, big data infrastructures and analytics, interactive learning, and advanced computing. Articles thatdiscuss two or more research areas of the journal are favoured. Scientific contributions should be of a high standard. Articles should be oriented towards a wide scientific audience of statisticians, data scientists, computer scientists, data analysts, etc. The journal welcomes original contributions that are not being considered for publication elsewhere and contain a high level of novelty. Articles with a thorough but concise review of a certain topic with the potential to provide new insights are also welcome. Manuscripts submitted to the journal generally are accompanied by supplementary material containing software code, data, technical derivations or detailed explanations, additional examples, etc. All submitted material will be reviewed by the assigned associate editor and reviewers of the manuscript.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v1i1.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Journal of Data Science, Statistics, and Visualisation (JDSSV) is an electronic journal which welcomes contributions to data science, statistics, and visualisation, and in particular, those aspects which link and integrate these subject areas. Articles can cover topics such as machine learning and statistical learning, the visualisation and verbalisation of data, visual analytics, big data infrastructures and analytics, interactive learning, and advanced computing. Articles thatdiscuss two or more research areas of the journal are favoured. Scientific contributions should be of a high standard. Articles should be oriented towards a wide scientific audience of statisticians, data scientists, computer scientists, data analysts, etc. The journal welcomes original contributions that are not being considered for publication elsewhere and contain a high level of novelty. Articles with a thorough but concise review of a certain topic with the potential to provide new insights are also welcome. Manuscripts submitted to the journal generally are accompanied by supplementary material containing software code, data, technical derivations or detailed explanations, additional examples, etc. All submitted material will be reviewed by the assigned associate editor and reviewers of the manuscript.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创刊编辑
《数据科学、统计和可视化杂志》(JDSSV)是一本电子期刊,欢迎对数据科学、统计和可视化,特别是那些连接和整合这些学科领域的方面的贡献。文章可以涵盖机器学习和统计学习、数据的可视化和语言化、可视化分析、大数据基础设施和分析、交互式学习和高级计算等主题。讨论期刊两个或两个以上研究领域的文章更受欢迎。科学贡献应该是高水平的。文章应该面向统计学家、数据科学家、计算机科学家、数据分析师等广泛的科学受众。本刊欢迎在其他地方未被考虑发表的原创文章,并欢迎具有高度新颖性的文章。对某一主题进行全面而简明的回顾,并有可能提供新的见解的文章也受欢迎。提交给期刊的稿件通常附有补充材料,包括软件代码、数据、技术衍生或详细解释、附加示例等。所有提交的材料将由指定的副编辑和审稿人审阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine Visual Interactive Parameter Selection for Temporal Blind Source Separation RoA: visual analytics support for deconfounded causal inference in observational studies An edge preserving median filter for images based on level-sets Visualisations for Bayesian Additive Regression Trees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1