TiO2 Applications as a Function of Controlled Surface Treatment

N. Veronovski
{"title":"TiO2 Applications as a Function of Controlled Surface Treatment","authors":"N. Veronovski","doi":"10.5772/INTECHOPEN.72945","DOIUrl":null,"url":null,"abstract":"For the end use, the structure and morphology of the coated film are very important since they determine the final properties of the resultant material. The effect of coatings largely depends on their composition and method of application, which may give porous or dense coatings. To achieve uniform coatings on dispersed TiO2 particles, various compounds were deposited one after another under specific conditions by the wet chemical deposition method starting from rutile TiO2, produced by the sulfate method in Cinkarna Celje. With the synthesis of composite particles consisting of a core TiO2 particle coated with a functional shell with dimensions in the nano scale, we prepared advanced materials, where the shell protects the particles from undesirable interactions with the environment and improves surface reactive properties of the dispersed particles to meet special requirements. The morphology of surface-treated TiO2 particles has been identified directly using electron microscopy, while the degree of functionalization by various hydroxides was determined using X-ray fluorescence spectrometer (XRF). In addition, zeta potential (ZP) measurements have been utilized to determine the electrochemical properties of resultant particles. The precipitation of hydroxides on the TiO2 surface resulted in the shift of the isoelectric point (IEP). UV-Vis spectroscopy has been used for determining light scattering efficiency. In addition to internal characterization, light fastness of durable grade intended for the application in laminates has been tested by the end user.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Titanium Dioxide - Material for a Sustainable Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.72945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For the end use, the structure and morphology of the coated film are very important since they determine the final properties of the resultant material. The effect of coatings largely depends on their composition and method of application, which may give porous or dense coatings. To achieve uniform coatings on dispersed TiO2 particles, various compounds were deposited one after another under specific conditions by the wet chemical deposition method starting from rutile TiO2, produced by the sulfate method in Cinkarna Celje. With the synthesis of composite particles consisting of a core TiO2 particle coated with a functional shell with dimensions in the nano scale, we prepared advanced materials, where the shell protects the particles from undesirable interactions with the environment and improves surface reactive properties of the dispersed particles to meet special requirements. The morphology of surface-treated TiO2 particles has been identified directly using electron microscopy, while the degree of functionalization by various hydroxides was determined using X-ray fluorescence spectrometer (XRF). In addition, zeta potential (ZP) measurements have been utilized to determine the electrochemical properties of resultant particles. The precipitation of hydroxides on the TiO2 surface resulted in the shift of the isoelectric point (IEP). UV-Vis spectroscopy has been used for determining light scattering efficiency. In addition to internal characterization, light fastness of durable grade intended for the application in laminates has been tested by the end user.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiO2在受控表面处理中的应用
对于最终用途,涂层的结构和形态是非常重要的,因为它们决定了所得材料的最终性能。涂层的效果在很大程度上取决于它们的成分和应用方法,这可能会产生多孔或致密的涂层。为了在分散的TiO2颗粒上实现均匀的涂层,以Cinkarna Celje用硫酸盐法生产的金红石型TiO2为原料,采用湿法化学沉积法,在特定条件下依次沉积各种化合物。通过合成由核心TiO2粒子包覆纳米级功能壳的复合粒子,我们制备了先进的材料,该材料可以保护颗粒免受与环境的不良相互作用,并提高分散颗粒的表面反应性能,以满足特殊要求。用电子显微镜直接鉴定了表面处理后的TiO2颗粒的形貌,并用x射线荧光光谱仪(XRF)测定了各种氢氧化物的功能化程度。此外,zeta电位(ZP)测量已被用来确定所得粒子的电化学性质。氢氧化物在TiO2表面的沉淀导致了等电点(IEP)的移位。紫外可见光谱法已被用于测定光散射效率。除了内部特性外,用于层压板的耐用级耐光性已由最终用户进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances in TiO2 Nanotube-Based Materials for Photocatalytic Applications Designed by Anodic Oxidation Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications Preparation of Blue TiO2 for Visible-Light-Driven Photocatalysis Novel Two-Dimensional Nanomaterial: High Aspect Ratio Titania Nanoflakes Synthetic Methods for Titanium Dioxide Nanoparticles: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1