Prediction of cometary OH maser emission in 1.6 GHz frequency band based on optical brightness

Q4 Physics and Astronomy Astronomical and Astrophysical Transactions Pub Date : 2022-08-08 DOI:10.17184/eac.6476
K. Šķirmante, G. Jasmonts
{"title":"Prediction of cometary OH maser emission in 1.6 GHz frequency band based on optical brightness","authors":"K. Šķirmante, G. Jasmonts","doi":"10.17184/eac.6476","DOIUrl":null,"url":null,"abstract":"Cometary OH maser emission evaluation was carried out to identify potentially bright comets for which OH maser emission were detectable in 1.6 GHz frequency range using Irbene RT-32 radio telescope. The evaluation model was based on the results of more than 3320 comets observations using data from optical and radio observations. Using the evaluation model, the correlation between optical brightness and radio flux density and correlation between flux density and OH production models was analyzed. In the research a prediction neural network model prototype was created to predict the comet brightness value in optical frequency range, based on the analyzed results from obtained correlation and characteristics of the comet. Based on the prediction model, the comet C/2021 A1 (Leonard) was observed in 1.6 GHz frequency band using Irbene RT-32 radio telescope. Spectral analysis using Fourier transform was applied to radio astronomical data from multiple observations related to weak cometary OH maser detection.","PeriodicalId":52135,"journal":{"name":"Astronomical and Astrophysical Transactions","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical and Astrophysical Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17184/eac.6476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Cometary OH maser emission evaluation was carried out to identify potentially bright comets for which OH maser emission were detectable in 1.6 GHz frequency range using Irbene RT-32 radio telescope. The evaluation model was based on the results of more than 3320 comets observations using data from optical and radio observations. Using the evaluation model, the correlation between optical brightness and radio flux density and correlation between flux density and OH production models was analyzed. In the research a prediction neural network model prototype was created to predict the comet brightness value in optical frequency range, based on the analyzed results from obtained correlation and characteristics of the comet. Based on the prediction model, the comet C/2021 A1 (Leonard) was observed in 1.6 GHz frequency band using Irbene RT-32 radio telescope. Spectral analysis using Fourier transform was applied to radio astronomical data from multiple observations related to weak cometary OH maser detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光学亮度的彗星OH脉泽1.6 GHz波段发射预测
利用Irbene RT-32射电望远镜对彗星OH微波激射辐射进行评估,以确定在1.6 GHz频率范围内可探测到OH微波激射的潜在明亮彗星。该评估模型基于对3320多颗彗星的观测结果,这些观测数据来自光学和射电观测。利用评价模型,分析了光亮度与射电通量密度的相关性以及射电通量密度与OH生成模型的相关性。在此基础上,通过对彗星的相关特性和观测结果的分析,建立了预测彗星光频范围亮度的神经网络模型原型。基于预测模型,利用Irbene RT-32射电望远镜在1.6 GHz频段观测到C/2021 A1 (Leonard)彗星。利用傅里叶变换对弱彗星OH脉泽探测中多次观测得到的射电天文数据进行了光谱分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomical and Astrophysical Transactions
Astronomical and Astrophysical Transactions Physics and Astronomy-Instrumentation
CiteScore
0.40
自引率
0.00%
发文量
16
期刊介绍: Astronomical and Astrophysical Transactions (AApTr) journal is being published jointly by the Euro-Asian Astronomical Society and Cambridge Scientific Publishers, The journal provides a forum for the rapid publication of material from all modern and classical fields of astronomy and astrophysics, as well as material concerned with astronomical instrumentation and related fundamental sciences. It includes both theoretical and experimental original research papers, short communications, review papers and conference reports.
期刊最新文献
"BV Ic" light curves of type II Cepheids and RV Tau type stars From the launch of the first satellite to the global problem of space debris The spectroscopy of possible γ-ray background in the white dwarf atmosphere Discrete flow of matter in the X-ray binary Her X-1 Physical bases of the short-term forecast of earthquakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1